
Compositional Visual Reasoning and
Generalization with Neural Networks

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Aleksandar Stanić

under the supervision of

Prof. Jürgen Schmidhuber

February 2024

Dissertation Committee

Prof. Cesare Alippi Università della Svizzera italiana, Switzerland
Prof. Rolf Krause Università della Svizzera italiana, Switzerland
Prof. Michael Mozer Univeristy of Colorado, USA
Prof. Ivan Vulić University of Cambridge, England

Dissertation accepted on 19 February 2024

Research Advisor PhD Program Director

Prof. Jürgen Schmidhuber Prof. Walter Binder/ Prof. Stefan Wolf

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Aleksandar Stanić
Lugano, 19 February 2024

ii

Abstract

Deep neural networks (NNs) recently revolutionized the field of Artificial Intel-
ligence, making great progress in computer vision, natural language processing,
complex game play, generative AI, and scientific disciplines. However, these
connectionist models are still far from human-level performance in terms of their
robustness to domain changes, their ability for compositional reasoning, and
combinatorial generalization to unseen data.

In this thesis, we hypothesize that this is a consequence of the binding prob-
lem, namely, the inability of NNs to discover discrete representations from raw
data and flexibly combine them to solve tasks. We first discuss three promis-
ing paths going forward: learning an object- and relation-centric world model,
scaling NNs, and employing task decomposition through modular NNs, e.g. by
using a large language model (LLM) as a controller. We then present several
contributions on learning object representations, as well as on visual reasoning
with LLMs as controllers.

Firstly, we propose a novel approach to common-sense relational reasoning
by learning to discover objects and relations from raw pixels and modeling their
interactions in a parallel rather than sequential manner, which improves predic-
tion and systematic generalization. We then introduce a model that can not only
learn objects and relations from raw visual data, but also discover a hierarchi-
cal part-whole structure between them. Our approach distinguishes multiple
levels of abstraction and improves over strong baselines in modeling synthetic
and real-world videos. Since (hierarchical) decomposition into objects is gener-
ally task dependent, it is sometimes infeasible and undesirable to decompose a
scene into all hierarchy levels. For these reasons, it might be more beneficial to
modulate objects with task information, e.g. via actions/goals in a reinforcement
learning setting. In this context, we introduce object-centric agents that greatly
improve generalization and robustness to unseen data. We then introduce a
novel synchrony-based method that, for the first time, is capable of discovering
objects in an unsupervised manner in multi-object color datasets and simulta-
neously representing more than three objects.

iii

iv

Our final contribution is on visual reasoning with LLMs as controllers that
has the potential to “sidestep” the binding problem, by decomposing the task
into subtasks and then solving the subtasks by orchestrating a set of (visual) tools.
We introduce a framework that makes use of spatially and temporally abstract
routines and leverages a small number of labeled examples to automatically gen-
erate in-context examples, thereby avoiding human-created in-context examples
and making the LLMs as controllers setup more robust.

By comparing these models with standard approaches in the literature, we
confirm that object-centric approaches are promising for endowing NNs with
human-level compositional reasoning and generalization capabilities.

Acknowledgements

Completing this thesis and my PhD would have been impossible without so
many great people that helped me along the way. First of all, I would like to
thank my advisor Jürgen Schmidhuber for giving me the opportunity to do my
PhD in his group, for all the discussions that have fundamentally shaped the
way I think about AI, but also the more “philosophical” discussions over our
numerous lunches. I will never forget questions such as “Can all cattle of the
world fit into that hill across the river?”. Thank you also for believing in me and
giving me basically unlimited freedom to research the topics in this dissertation.

Special thanks also go to my committee members Cesare Alippi, Rolf Krause,
Mike Mozer, and Ivan Vulić. Thank you all for agreeing to serve on my com-
mittee and for your valuable feedback on this thesis. In particular, thank you
Mike for numerous insightful discussions and for being so supportive whenever
I reached out to you. You are a perfect example of how to selflessly help others
and a great motivation to do good. I hope to be able to do for others what you
have done for me.

Going a bit earlier in my academic “family tree” I would like to thank Helmut
Bölcskei, my master thesis advisor at ETH Zurich. It was you who advised me to
take the machine learning course early in my studies, because you thought that
“this will be a very important field in the future”. Thank you especially for your
pedagogical approach to research and teaching, for taking a chance on me and
even personally guiding me through theory-heavy projects no matter how “lost”
I was.

PhD is a very solitary journey, but luckily I had some great companions in
my labmates along the way who shared the struggle, the happiness, the frustra-
tion, the good, and the bad moments. Thank you to Robert Csordas, Francesco
Faccio, Sjoerd van Steenkiste, Imanol Schlag, Louis Kirsch, Anand Gopalakr-
ishnan, Klaus Greff, Aditya Ramesh, Vicent Herrmann, Kazuki Irie, Dylan Ash-
ley, Mikhail Andronov, Miroslav Mirek Strupl, Michael Wand, Krsto Prorokovic,
Xingdong Zuo, Paulo Rauber, Filipe Mutz, Julius Kunze, Qinhan Hou and Ste-
fano van Gogh. Thank you all for creating a stimulating research environment

v

vi

and for helping me find moments of joy outside of work in Lugano. Thank you
Robert and Francesco for being unforgettable officemates in the early years. We
created a unique and fun atmosphere (to say the least), which was often chal-
lenging to get some focused work done, but the jokes kept us in good spirits and
eased our way through the difficult early years. Thank you, Robert, in particu-
lar, for your critical thinking and for being unwilling to accept any idea before
you fully understand it. Thank you also for being our internal IT support and,
above all, for being a true friend. Thank you Francesco for acting as the group’s
“event manager”, for organizing all the boardgames and the hikes, and for all
the entropy you generated with your unusual life stories. Thank you Sjoerd for
the collaboration, your critical thinking, and all the help and advice regarding
papers, internships, and projects in general. Working with you has definitely
sharpened my way of thinking about the scientific process. Thank you Imanol
for all the interesting discussions and for generously offering to collaborate on
the languini project. Thank you Lous for being an example of where motivated
and focused work can bring us to and for categorically rejecting to spend energy
on anything that is not constructive and positive. If it were not for you, we would
not have been encouraged to apply for internships so early in our PhDs. Thank
you Anand for so often being my go-to person, my closest collaborator, and for
the friendship that was always fueled by jokes. Your sense of humor and witti-
ness so often brought light into the day. Thank you Kazuki for the collaboration,
for your help and for being the right example of what it means to “do science
for the right reasons”. Thank you Klaus for all the discussions and help. Even
though we overlapped only a few months in our PhDs (and a few more during
my visit to Google), the interaction with you probably had the largest influence
on my research in these last few years, since it were your papers through which
I became familiar with the binding problem. If it weren’t for you, this thesis
would have looked completely different. Thank you also to Aditya and Vincent,
the “young” group members that have profoundly shaped it through their pos-
itivity and friendship, especially when it comes to social activities outside of
work.

During the course of my PhD I was lucky to have had several opportunities to
do internships and to collaborate with amazing people and researchers. First of
all, I would like to thankDavid Ha and Yujin Tang for the collaboration duringmy
student researcher time at Google Brain. Thank you David for taking a chance
on me for my first engagement at Google and for your support throughout the
project. Thank you Yujin for being such a caring person, for your help with the
project, and the discussions we have had since then.

Secondly, I would like to thank many people who I met and worked with

vii

during my internship at DeepMind. Thank you to Alex Lerchner, Loic Matthey,
Matko Bosnjak, Jovana Mitrovic, and Andre Saraiva for collaboration. In particu-
lar, thank you Alex for the opportunity to join and work in your team. Thank you
Loic for being an amazing host. I will forever be grateful for your selfless help,
daily discussions about research and technical problems, and for being there
for me to even code up some parts when things were getting tough. Thank you
Matko for your help on the project, for daily discussions about research and life,
and for providing a constant stream of jokes and good humor. One often needs
a tough “Balkan” skin for your humor, but you are one of the people with the
biggest heart that I know, so everything else becomes irrelevant. Thank you
Jovana for your dedication and willingness to collaborate with me. Your way of
thinking has definitely shaped mine, especially in terms of prioritizing things in
research and the focus. Thank you to the entire Concepts team for making Deep-
Mind feel like home. I would also like to thank many other people that I met at
DeepMind for the interesting interactions and discussions that have shaped the
way I think: Marin Vlastelica, Nemanja Rakicevic, Michael Chang, Cristina Pin-
neri, Sami Alabed, Ivana Balazevic, Petar Velickovic, Hamza Merzic, Anastasija
Ilic, Daniel Zoran, Rishabh Kabra, Joe Marino, Martin Engelcke, Goker Erdo-
gan, Chris Knutsen, Matt Botvinick, Olivier Henaff, Jean-Baptiste Alayrac, Drew
Jaegle, Antoine Miech, Anirudh Goyal, Adam Kosiorek, Geoff Hinton, Antonia
Creswell, Murray Shanahan, Andreea-Ioana Deac, Vitaly Kurin, Wilka Carvalho,
and Aishwarya Kamath.

Thirdly, I would like to thank my hosts Sergi Caelles and Michael Tschannen
for a very fruitful collaboration during my internship at Google. Thank you both
for numerous brainstorming sessions, all the help with the infrastructure, advice
on the project, and especially on guidance in terms of prioritization when I
would become overly optimistic of what can be done in the short time frame.
Thank you also to numerous people who welcomed me in the Berlin office:
Klaus Greff, Mehdi S. M. Sajjadi, Tomasz Dobrowolski, Étienne Pot, Alexey
Dosovitsky, Aravindh Mahendran, Daniel Duckworth, Adam Paszke, Thomas
Unterthiner, Klaus-Robert Müller, Danny Dries, and also fellow interns Max
Dax, Robert Lange, and Niklas Schmitz. Thank you for all the lunches, board
game evenings, research lunches, table foosball matches, and in general for light-
ing up my Berlin days. Finally, I would also like to thank Sjoerd van Steenkiste,
Mike Mozer, Thomas Kipf, Rodrigo Benenson, Jordi Pont-Tuset, Mario Lucic,
and Filip Pavetic for interesting discussions and their help.

Throughout the course of this PhD, I was lucky to have had many friends
supporting me from the other, more important, nonbusiness side of life. First,
I would like to thank my Swiss family Bénédicte Amphimaque, Jana Jankovic,

viii

Masa Davidovic, Ceca Todorovic, Mihajlo Milenkovic, and Slobodan Boricic.
Thank you for the numerous dinners, summer and winter trips, and for being
such a supportive group in some of the most difficult times I’ve been through.
I can’t wait to see what the future holds for us. Thank you to the boys “gang”
from my masters studies: Rajko Kisdobranski, Djordje Miladinovic, Berkin Kalay,
Baris Atakan and Tanju Gülsever. As Baris wrote in his PhD thesis, with you
guys I know I have friends for life. Thank you to my many other friends from
Zurich, Lausanne and all over Switzerland: Andjelo Martinovic, Marko Ristin, Jo-
van Nikolic, Suzan Çelik, Sudarshan Ravi, Amrollah Seifoddini, Nevena Sapon-
jic, Miroslav Veljovic, Irina Subotic, as well as the uniqFEED (alumni) Michele
Dell’Ambrogio, Peter Entschev, Ulrich Müller and Niko Stefanoski. Thank you
to my childhood friends Pavle Ilic and Vladimir Ivanovic for making me re-
member those days and act as if nothing changed whenever we are together.
Thank you also to my Belgrade friends from bachelor studies, Hana Gostimir,
Marija Boljanac, Jovana Vranic, Igor Bajovic, Vladimir Radosevic, Ivan Sime-
unovic and Nikola Bozic. Finally, I would like to thank all the people who
made my stay in Lugano more fun and easier to go through: Camila Alvarez
Triviño, Kana Hirayama, Taimoor Tariq, Slobodan Lukovic, Beatrice Granaroli,
Marilena Palomba, Alex Bortolotti and Bobby Ventikal.

Special and the greatest thanks go to my family: my parents Mirjana and
Dragan Stanic, my sister Sonja and her family Darko, Hana, and Luka Pipic for
being a great team, for always being there for me and for being my biggest fans.
In particular, I thank my parents for their never-ending unconditional love, the
single most important thing that parents could give to their child. Hvala vam
svima za sve.

Finally, thank you Béné for lighting up my every day. Merci pour tout.

Contents

Contents ix

1 Introduction 1
1.1 The Binding Problem . 4
1.2 Prior work and possible ways of going forward 11

1.2.1 Object-centric Inductive Biases 11
1.2.2 Scaling Parameters, Data and Compute 18
1.2.3 Modular Networks and LLMs as controllers 19

1.3 Contributions and organization 22

2 Improving Relational Reasoning In Sequential Slots Models 25
2.1 Relational Sequential Attend Infer Repeat 26

2.1.1 Relational Module . 28
2.2 Experiments . 30
2.3 Conclusion and Discussion . 32

3 Learning Hierarchical Object Representations 33
3.1 Method . 35

3.1.1 Inferring Objects, Parts, and their Relations 36
3.1.2 Physical Reasoning . 38
3.1.3 Learning . 40

3.2 Related Work . 41
3.3 Experiments . 43

3.3.1 State Springs Dataset 43
3.3.2 Visual Datasets . 46

3.4 Conclusion and Discussion . 48

4 Learning to Generalize with Object-centric Agents 49
4.1 Environments . 51
4.2 Methods . 54

ix

x Contents

4.2.1 Linear and Recurrent PPO 54
4.2.2 Object-centric Agents 55

4.3 Experiments on the Crafter environment 57
4.3.1 Improved baselines and hyper-parameter analysis. . . . 57
4.3.2 Agents use inventory display as a “scratchpad.” 59
4.3.3 Recurrent improve over feedforward agents 59
4.3.4 Asymptotic Performance 59

4.4 OOD Generalization Experiments 61
4.4.1 CrafterOODapp - out-of-distribution object appearance. 61
4.4.2 CrafterOODnum - out-of-distribution object numbers. . 64

4.5 Object-centric Agents Analysis 65
4.5.1 Object-centric Agents Ablation 65
4.5.2 OC-SA Agents Visualization and Interpretability. 67
4.5.3 OC-CA Agents Visualization and Interpretability. 68

4.6 Related Work . 68
4.7 Conclusion and Discussion . 70

5 Synchrony-based Object Discovery with Complex-Valued Autoen-
coders 73
5.1 Background . 75
5.2 Method . 77
5.3 Results . 80
5.4 Related Work . 87
5.5 Conclusion and Discussion . 89

6 Compositional Visual Reasoning with LLMs as Programmers 91
6.1 LLMs as programmers for visual reasoning framework 93

6.1.1 Background . 94
6.1.2 Abstract API through visual routines 95
6.1.3 Automatic generation of in-context examples 96
6.1.4 Self-correction . 97

6.2 Experiments . 98
6.2.1 Zero-Shot through spatially and temporally Abstract API 101
6.2.2 Few-shot boostrapping via automatically generated in-

context examples (ACEs) 102
6.2.3 Self-correction . 103
6.2.4 Error analysis . 105

6.3 Discussion and future work . 106
6.4 Conclusion . 107

xi Contents

7 Conclusion and Future Work 109

Publications during the PhD program 113

A Additional Details for Learning Hierarchical Object Representations 115
A.1 Datasets . 115

A.1.1 Springs . 115
A.1.2 Human3.6M . 116
A.1.3 KTH . 117

A.2 Training Details . 117
A.3 HRI Architecture Details . 118
A.4 Ablations . 119
A.5 NRI Baseline . 121
A.6 LSTM Baseline . 122
A.7 Additional Results . 122
A.8 State Springs . 123
A.9 Visual Springs - Different Number of Objects and Homogeneous

Colors . 126
A.10 Prediction Rollouts and Latent Interaction Graph Inference . . . 126
A.11 Visual Springs - Diverse Datasets 130
A.12 Visual Springs - Generalization to Different Number of Objects 133

B Additional Details for Learning to Generalize with Object-centric
Agents 135
B.1 OOD environment Objects . 135
B.2 Network Configurations . 136
B.3 Object-centric agents formal details 141

B.3.1 Object-centric Self-Attention (OC-SA) agents 141
B.3.2 Object-centric Cross-Attention (OC-CA) agents 141

B.4 Off-policy algorithms on Crafter 144
B.5 CrafterOODapp performance 145
B.6 CrafterOODnum performance 146
B.7 Hyper-parameter heatmaps . 146

C Additional Details for Synchrony-based Object Discovery with
Complex-Valued Autoencoders 151
C.1 Experimental Details . 151
C.2 Additional results . 154

C.2.1 Generalization to Higher Number of Objects 155

xii Contents

C.2.2 Architecture Modifications 156
C.2.3 Contrastive Learning Ablations 157

C.3 Additional Visualizations . 158

D Additional Details for Compositional Visual Reasoning with LLMs as
Programmers 169
D.1 Ablations . 169
D.2 Pretrained models . 172
D.3 Self-debugging prompt . 173
D.4 Prompt listings . 174

D.4.1 RefCOCO and GQA - ViperGPT API 174
D.4.2 RefCOCO and GQA - Abstract API 180
D.4.3 NExT-QA - ViperGPT API 189
D.4.4 NExT-QA - Abstract API 201

Bibliography 205

Chapter 1

Introduction

Artificial intelligence (AI) has recently made great progress in many areas, such
as image recognition [Ciresan et al., 2012; Krizhevsky et al., 2012], natural lan-
guage processing [Devlin et al., 2018], game playing [Silver et al., 2018], and
scientific disciplines [Jumper et al., 2021; Degrave et al., 2022]. In particular,
generative models for images [Ramesh et al., 2021; Betker et al., 2023], videos
[Villegas et al., 2022], and text [OpenAI, 2022, 2023c; Anil et al., 2023] have
made notable breakthroughs. Lately, generative models for text based on large
language models (LLMs) have also been combined with visual modality into
multimodal vision and language models (VLMs) [OpenAI, 2023d; Team et al.,
2023]. Central to this success have been deep neural networks (NNs) [Schmid-
huber, 2015] trained on massive amounts of data. However, even the most ad-
vanced state-of-the-art (SotA) models struggle in tasks that require compositional
reasoning, the ability to generalize, fine-grained spatial reasoning, and counting
[Bugliarello et al., 2023; Paiss et al., 2023; Hsieh et al., 2023; Yuksekgonul et al.,
2022; Zhao et al., 2022; Hendricks and Nematzadeh, 2021].

The notion of compositionality can be tracked as far as Gottlob Frege’s work
[Frege, 1892a,b, 1923], where the separability of sentences and thoughts into
substructures is first noted. However, the first time the term compositionality
was used was probably by Katz and Fodor [Katz and Fodor, 1963]. Composi-
tionality has since been studied in fields such as linguistics, logic, neuroscience,
and dynamic NNs [Werning et al., 2005; Schmidhuber, 1990a]. A concise for-
mulation of the term “compositionality” was provided by Werning et al. [2005]:
“An interpreted representational system R is compositional if and only if for ev-
ery complex representation r of R, the meaning of r is determined by the struc-
ture of r and the meaning of the constituents of r”. This is a central theme of the
symbolic paradigm, where intelligence results from the manipulation of abstract

1

2

compositional representations of objects and their relations. There, complex
models are decomposed into objects using a compositional representation by
using relations. This results in a hierarchy of recursive computations, where we
end up with generic atomic parts that can be combinatorially reused to generate
novel representations. Here, by combinatorial generalization, we mean “mak-
ing infinite use of finite means” [von Humboldt et al., 1999; Chomsky, 1969].
In linguistics, for example, the set of primitives is the letters in written language,
and the structure is defined by orthographic, syntactic, and grammatical rules.
Compositionality is present in vision as well. Biederman [1987] interprets com-
positionality in vision by introducing shape primitives, called geons, which have
distinctive properties invariant under different viewpoints and are composed
into entities via a hierarchical structure. Object detection is then achieved by
analyzing the spatial relationships (the structure) of the individual components.

An example of a compositional task would be to answer the following ques-
tion: “Could the cookies on the table be evenly distributed among children?”. To
solve this task, the model needs to detect the cookies in the image, filter out the
ones that are not on the table, detect children, count cookies and children, and
check if cookies count is divisible by the children count. Questions like these
are difficult for current end-to-end VLMs. Scaling VLMs further makes them even
more data and compute hungry [Villalobos et al., 2022], which means that scale
alone seems unlikely to solve these tasks, especially due to the infinitely long
tail of compositional tasks.

On the other hand, humans effortlessly answer such questions: decompos-
ing the question into the respective subquestions (e.g. “how many cookies are
there on the table?”), parsing the raw visual input into salient entities (symbols),
using them to answer subquestions, and then composing those to answer the
initial question. Humans can also deal with previously unseen data or situa-
tions by making use of analogies and relying on previously learned knowledge,
rules, and laws that govern our world. The ability to generalize beyond our ex-
perience has long been thought to be based on our ability to think in terms of
symbols. We seem to be able to extract symbols from raw visual, auditory, and
tactile input signals, which are then used to relate unseen concepts and gen-
eralize to unseen situations using previously learned knowledge about related
concepts. This facilitates compositional reasoning in domains such as language,
vision, and planning. This ability to compositionally solve tasks and to gener-
alize seems to be missing in today’s NNs. Our hypothesis of why NNs fail in
tasks that humans effortlessly solve is that they suffer from the so-called binding
problem [Von Der Malsburg, 1994; Roskies, 1999; Greff et al., 2020].

We argue that the inability to flexibly bind features hampers both the gener-

3

(a) (b)

Figure 1.1: Images generated by OpenAI’s DALL-E 3 model [OpenAI, 2023a] for
the following prompts: (a) “An image of a giraffe riding a horse. On their left
side there is an elephant. A mouse is riding the elephant. The elephant is pink.”;
(b) “An image of 7 cubes stacked on top of each other in rainbow colors. On
the left side of this stack, there is a red sphere and a violet cube”.

ative and the recognition models that are based on NNs. For concrete evidence,
consider the images in Figure 1.1, generated by OpenAI’s DALL-E3 model [Ope-
nAI, 2023a], one of the state-of-the-art image generation models. In Figure 1.1a
we can see how the model struggles with complex generalization, binding at-
tributes to features, and relational reasoning between objects. For example,
instead of generating a giraffe riding a horse, the network generates a mouse
riding a giraffe. We can also see that certain features of the giraffe have horse-
like properties (e.g. the tail and the legs). The elephant is correctly generated
in pink, but on the right side of the giraffe, instead of the left side, as instructed.
In Figure 1.1b we can see how the model struggles with counting and again
with relational reasoning. From the instruction, it is intuitively clear that the
model should simply generate a stack of 7 cubes. Instead, the model generates
a pyramid with 22 cubes, many more than the 7 requested. The model cor-
rectly generates a red sphere next to the cubes, but forgets to draw a violet cube.
In other works [Wang et al., 2023b], it was found that generative image models
handle material, color, and size attributes better than count and shape attributes.

To show that the binding problem is present not only in the generative mod-
els but also in the recognition models, we query GPT4-V [OpenAI, 2023d] to
answer the following question about Figure 1.1b: “How many cubes are there
in the image?”. GPT4-V replies: “There are 21 cubes arranged in a pyramid-like
structure, with 1 cube at the top, followed by layers with 4, 6, and 10 cubes,

4 1.1 The Binding Problem

Figure 1.2: A visually simple scene illustrating the difficulty of representing mul-
tiple objects simultaneously in neural networks. This naive representational for-
mat assumes that individual neurons encode different patterns in the data. This
results in the so-called “grandma neurons”.

respectively, from the top to the bottom.”. Here, we can see that the models
also have limited counting and fine-grained scene understanding capabilities.
Instead of 22, the model detects 21 cubes. Also, instead of 6 layers, it reports
that there are 4 layers, and it further wrongly counts (or hallucinates) the number
of cubes in each layer. This further supports our hypothesis that NNs suffer from
the binding problem.

1.1 The Binding Problem

The binding problem is a class of problems concerned with how complex pat-
terns in perceptual input are represented in the human brain, more specifically
how individual attributes “bind” to a particular object. Visual binding problem
[Treisman, 1996; Roskies, 1999] is of great importance for human perception
[Spelke, 1990] and cognition [Wertheimer, 1923; Koffka, 1935; Köhler, 1967].
It is fundamental to our visual capabilities to integrate several features together,
such as color, shape, texture, etc., into a unified whole [Kahneman et al., 1992].
This problem becomes even more prominent in a multi-object setting when mul-
tiple distributed representations need to be simultaneously represented in the
network.

Consider a scene containing a blue cube and/or a red sphere, such as the
one in Figure 1.2. In the case where only the blue cube is present, the NN
representation should contain the “blue” and the “cube” information. Similarly,
it would contain the “red” and “sphere” for the scene with only a red sphere.
However, if both cube and sphere are present, then theNN representationwould
contain all attributes: “blue”, “red”, “cube” and “sphere”. The binding problem

5 1.1 The Binding Problem

Figure 1.3: An illustration of the binding problem in the fully distributed repre-
sentational format with disentangled features, also known as the superposition
catastrophe. From the representation of the image on the right, it is impossible
to know which shape binds to which color.

deals with the question of how to decompose and keep track of all individual
attributes simultaneously, but correctly knowing which ones bind to each other.

A naive theory of how the brain could achieve such binding is that individual
neurons encode different patterns in the data Figure 1.2, resulting in so-called
“grandma neurons”. However, in practice, this would be infeasible, as there
would need to be exponentially many neurons to account for the complexity
of the real-world patterns, and for each novel situation (e.g. a new object or a
known object in a different context), a new neuron would need to be added.

An alternative solution could be the distributed representation as in Fig-
ure 1.3, where each concept is represented by a different (group of) neuron(s).
The difficulty of this representational format arises when multiple objects are
present, as in the image on the right in Figure 1.3. From the encoding of this
image, we cannot know which attribute binds to which, for example, if the cube
is blue or red.

Finally, the temporal correlation hypothesis [Milner, 1974; Von Der Mals-
burg, 1994] posits that “the neurons that fire together, wire together” by temporal
synchronization of the phase (frequency) of their firing patterns. However, the
hypothesis that the brain can achieve binding through the temporal synchrony
of firing patterns is not yet unanimously accepted by the research community.

In the following, we describe the particular aspects of the binding problem
through the lens of the framework introduced in Greff et al. [2020], which was
inspired by Treisman [1999]. Note, however, that we do not always follow
closely Greff et al. [2020], but only consider parts which are relevant for our
work, and at times there could be differences in our interpretations. Greff et al.
[2020] proposes to decompose the analysis of the binding problem into three
subproblems: representation, segregation, and composition, visually depicted
in Figure 1.4. The representation problem deals with the ways in which the
information is represented in NNs such that it is symbolic and compositional.

6 1.1 The Binding Problem

Representation

Segregation

Composition

on
 t
op

sm
aller

left of

Figure 1.4: The three subproblems of the binding problem according to Greff
et al. [2020]: segregation, representation and composition.

The segregation problem is concerned with the process of mapping the raw in-
put to the symbolic (object) representations. The composition problem deals
with how representations are used for inferences such as prediction, reasoning,
and planning.

Representation. The representation problem deals with how the information
that is extracted from the raw visual input is represented in structured, symbol-
like entities, called objects. Defining what an object is is a daunting task and
would likely necessitate a philosophical debate. For the purposes of discussing
the binding problem and generalization in NNs, by an “object” we assume some-
thing that can be used as a node in a graph, which can then be used to perform
certain inferences. Objects are, in this sense, building blocks that facilitate sym-
bolic functions of NNs. They represent a single whole separate from the rest
of the input that can be related or associated with other objects of similar type.
From the previous example of “a blue cube and a red sphere” it is obvious that
the incorporation of object-centric representations in NNs faces the “superpo-
sition catastrophe” [Von Der Malsburg, 1986], suggesting that fully connected
NNs suffer from “inherent trade-off between distributed representations and sys-
tematic bindings among units of knowledge” [Hummel and Holyoak, 1993].

In terms of the representation format, it should allow objects to be distin-
guished while retaining the advantages of distributed learned representations.
The key properties of this representation are separation, common format, and
disentanglement. Separation refers to the fact that the information about individ-
ual objects should remain separate at the representation level, i.e., their features
should not interfere with one another and should be able to ensure that objects
can be formed from novel feature combinations. The common format of object
representations is required to be able to compare and relate them (e.g. rela-

7 1.1 The Binding Problem

Figure 1.5: Illustration of the difficulty of the segregation problem. What an
object is is task- and context-dependent, e.g. the bottle and the cap in the left
image as a single object or separated into two objects. Similarly, the meaning of
the middle symbol in the image on the right depends on the context in which
we read it.

tionships such as “same as”, “bigger than”, “brighter than”, etc.). This means
that object representations should be inferred with the same set of parameters
(weights) from the raw input. Disentanglement [Schmidhuber, 1991b; Schmid-
huber et al., 1996; Bengio et al., 2013] means that the individual attributes in
the object representation should be represented separately and allowed to vary
independently (e.g. color of an object). This also facilitates representing objects
with unseen combinations of attributes and, therefore, robustness and general-
ization; e.g., though we have never seen a pink elephant, we can easily imagine,
draw, and describe it. Apart from the format requirements, Greff et al. [2020]
identify temporal dynamics as an important aspect of the representation: object
representation should be updated recurrently, taking into account the current
input and its previous state. The temporal consistency aspect should intuitively
aid in learning the representation (e.g. in the case of an occlusion or temporary
absence from the field of view).

Segregation. The segregation problem deals with how the raw input is mapped
onto the structured (object-centric) representation. In a way, the representation
problem describes what properties the object-centric representations should
have and the segregation problem how to infer them. The difficulty of segre-
gation lies in the often ill-defined notion of what an object is. For example,
consider the image on the left in Figure 1.5. By default, e.g. if the task is to
move the bottle, you would likely consider it to be one object. However, if you

8 1.1 The Binding Problem

were to drink the water from it, you would open the cap and then you would
have two objects. At what point does the cap stop being part of the “bottle”
object? Similar can be said for objects in the center image in Figure 1.5. If the
task is to move the sofa, then it would be considered an object, together with
the pillows on it. If we want to move the pillows, then each pillow would be a
separate object. For a more fine-grained task of counting the number of rhom-
boid patterns on the green pillow, we would separate the pillow into multiple
independent rhomboids to count them. Finally, in the image on the right in
Figure 1.5 we can see an example of how object meaning is also context depen-
dent. If we consider the middle symbol as part of the horizontal text, we would
likely read it as a letter “B”. However, if we read it as part of the vertical text, the
same symbol would probably now be read as the number “13”. Furthermore,
even concepts without clear boundaries can be considered an object: a cloud,
a lake, a pile of sand, a rainbow, or even a hole! Hopefully, this exemplifies
that the notion of what an object is cannot be solved purely through supervision
but must be learned mainly in an unsupervised manner and yet be context/task
dependent.

Therefore, objects might be easier to define in terms of their defining proper-
ties: modularity, hierarchy, and multi-stability through task-/context-dependent
modulation. Objects should be modular in the sense that they are self-contained
and reusable, independent of the context. Objects are often hierarchical and
can be decomposed into parts that can be observed as individual objects (the
bottle and its cap). In some way, this also connects to the “task-dependent”
definition of an object. Hierarchical decomposition may not be unique; for ex-
ample, a page of text can be decomposed into lines or sentences [Greff et al.,
2020]. This brings us to the important aspect of “multi-stability” that a part of the
perceptual input can belong to a number of different object groupings. More-
over, often the number of possible decompositions is so large that it would be
impossible and, more importantly, undesirable to keep track of the lowest level
of decomposition. Humans solve this by having a multi-stable perception that al-
lows dynamical segregation [Attneave, 1971]. Furthermore, the hierarchical or
task-dependent notion of objects may be modulated by top-down feedback from
the task at hand. Therefore, the segregation mechanism should be able to mod-
ulate the objects by the task information (e.g. a goal, an action, or text), which
hints at a reinforcement learning (RL) setup or a weak supervision via image-text
pairs. In particular, the weakly supervised case of image and text pairs is related
to the symbol grounding problem [Harnad, 1990]. In Harnard’s own words,
the symbol grounding problem is the problem of how to make the “semantic
interpretation of a formal symbol system … intrinsic to the system, rather than

9 1.1 The Binding Problem

Figure 1.6: Composition facilitates solving relational reasoning tasks such as
multi-hop compositional visual question answering (e.g. “Are there any rubber
things that have the same size as the yellow metallic cylinder?”) or Raven’s
progressive matrices [Raven and Court, 1938].

just parasitic on the meanings in our heads … in anything but other meaningless
symbols”. It deals with how symbols, such as words, are connected to objects
or concepts in the real world that they refer to. In this sense, the symbol ground-
ing problem can be seen as a special case of the binding problem. Apart from
image-text binding, the binding problem deals with other modalities such as
video and audio, but also with how perceptual grouping is accomplished in the
purely unimodal case of visual only input.

Composition. The composition problem deals with how segregated objects
are connected to each other and used for inference, such as planning and rea-
soning. In order to combine object representations and relations, we need a
variable binding mechanism, similar to having variables that are bound to place-
holder symbols in mathematical expressions or particular objects to input ar-
guments in a program function. Composition refers to both the process (func-
tion body) and the variable binding mechanism. The compositionality in these
mechanisms should mimic similar aspects of human cognition, which allow us
to systematically generalize beyond the situations we have encountered.

Examples of tasks where such compositional reasoning is required are pre-
sented in Figure 1.6. In the image on the left, the task could be to answer: “Are
there any rubber things that have the same size as the yellow metallic cylinder?”.
Solving this task should be trivial if we decompose the image into individual
objects, use them as nodes in the graph, and reason by performing inferences
over this graph. For example, one operation that we would use is “compare two
objects”, an operation that takes two variables as input. The first variable would

10 1.1 The Binding Problem

be the yellow cylinder, and for the second variable, we would perform dynamic
binding of all the other objects present in the scene. From this example, we
can see how answering such compositional queries should be possible for any
combination of objects (even if they have not been observed during training),
provided that we can decompose the scene into objects and that the “compare”
operation has been learned correctly. Similarly, to solve the problem on the
right, we should first decompose the image into eight objects, recognize their
individual shapes, count the dots inside of them, and then reason about how
the patterns change along the horizontal and vertical axes by comparing the in-
dividual nodes in the graph (objects). The described reasoning process is at the
core of the composition problem.

The key aspect for compositionality to arise is a structured model, namely
an NN that organizes its computation in terms of objects and their relations.
Separate representation of relations allows for representing graphs of different
structures and different edge types. Relations can be represented in a similar
way to objects, as distributed representations (of graph “edges”) that can en-
code causal (“triggered movement”), hierarchical (“is part of”) or comparative
(“smaller than”) relations [Greff et al., 2020]. Combining objects and relations
into different structures requires a variable binding mechanism, as there could
be many different relations between the same objects, e.g. “smaller than”, “left
of”, or even abstract ones such as “older than”. By connecting multiple object-
relation pathways, one can solve multihop compositional reasoning tasks, such
as the introductory example: “Could the cookies on the table be evenly dis-
tributed among children?”. It should also be possible to infer a task-dependent
structure, so relational inference should be dynamic.

Concluding thoughts. Finally, to give a complete overview of the field, note
that it is not unanimously accepted that the binding problem exists in the hu-
man brain (or NNs for that matter) [Riesenhuber and Poggio, 1999a,b; Ghose
and Maunsell, 2002, 2008]. They argue that the classical neural coding scheme
[Hubel and Wiesel, 1962] can cope with the perceptual combinatorial complex-
ity. However, the debate whether there is a binding problem in the brain is
beyond the scope of this thesis. Here, we look at the binding problem as a use-
ful framework for thinking about ways to improve current state-of-the-art NNs.
Importantly, the failure modes of the NNs with which we are concerned are
well agreed upon, and for which there exists extensive empirical evidence [Gr-
eff et al., 2020; Bugliarello et al., 2023; Paiss et al., 2023; Hsieh et al., 2023;
Yuksekgonul et al., 2022; Zhao et al., 2022].

11 1.2 Prior work and possible ways of going forward

1.2 Prior work and possible ways of going forward

As discussed above, neural networks struggle to generalize out-of-distribution,
adapt quickly to novel scenes, and solve compositional reasoning tasks. The
perspective of the binding problem gives us a framework to think about solutions
and potential ways of moving forward. In our view, there are three high-level
directions worth pursuing to improve NNs:

1. Object-centric inductive biases,

2. Scaling network parameters, data, and compute and

3. Modular NNs and, in particular, “tools use” through LLMs that act as con-
trollers and orchestrate a number of models (“tools”).

In the following, we describe each of these directions and give an overview of
prior work in each of the fields.

1.2.1 Object-centric Inductive Biases

If a neural network does not have an inductive bias that would enforce learn-
ing compositional representations, the gradient descent method will most likely
produce distributed representations. Even if the data-generating process is com-
positional, unless there is enough variation of all possible combinations of gener-
ating factors, the network will tend to learn an entangled representation [Bengio
et al., 2013; Garnelo and Shanahan, 2019].

Object-centric representations facilitate relational reasoning and generaliza-
tion, leading to better performance on downstream tasks such as visual question
answering [Ding et al., 2021; Wu et al., 2023], video game playing [Zambaldi
et al., 2019; Kulkarni et al., 2019; Gopalakrishnan et al., 2021; Stanić et al.,
2023; Yoon et al., 2023], and robotics [Mandikal and Grauman, 2021; Wu
et al., 2021; Sharma and Kroemer, 2021], compared to other monolithic repre-
sentations of visual input. Here, we discuss the most common object-centric
approaches: slot-based representations that enforce strict independence be-
tween inferred objects, methods to infer (hierarchical) relations between learned
objects, approaches to learning a “dynamic” object representations, and ap-
proaches to learning object groupings through temporal synchrony of phases
of complex-valued NNs.

12 1.2 Prior work and possible ways of going forward

Parallel Slots Sequential Slots Spatial Slots

Figure 1.7: Slot-based object-centric representations can be divided into parallel
slots, sequential slots and spatial slots.

Slot-based representations. Neural networks with slot-based representations
infer objects from visual input, often through a shared set of weights, which
guarantees a common format. They can be divided into parallel slots, sequential
slots, and spatial slots, as shown in Figure 1.7.

Parallel slots (Figure 1.7, left) are perhaps the most extensively studied kind
of slot-based methods [Greff et al., 2015, 2016, 2017, 2019; Prémont-Schwarz
et al., 2017; van Steenkiste et al., 2018; Veerapaneni et al., 2020; Goyal et al.,
2019; Kipf et al., 2020; Löwe et al., 2020; Kipf et al., 2021; Zoran et al., 2021;
Kabra et al., 2021; Ding et al., 2021; Singh et al., 2022; Elsayed et al., 2022;
Wu et al., 2023]. Here, all objects are inferred in parallel through a shared set
of weights. Since inference is parallel, there is a need for a symmetry-breaking
mechanism such that not all slots infer the same information. This line of work
was initiated by Greff et al. [2015] where binding on simple toy datasets was ob-
tained with reconstruction clustering in a denoising autoencoder. Many other
methods followed, such as NEM [Greff et al., 2017] which learns object repre-
sentations using a spatial mixture model, IODINE [Greff et al., 2019] that ex-
tends NEM by iteratively refining inferred objects, SlotAttention [Locatello et al.,
2020] that further simplifies the inference by iterating in the latent instead of
the input space, SAVi [Kipf et al., 2021] that extends it to videos and SAVi++
[Elsayed et al., 2022] that uses depth information to scale slot-based methods to
real-world data. Another line of work applied SlotAttention-like iterative mech-
anisms to reconstruct features instead of pixels for images (DINOSAUR [Seitzer
et al., 2022]) and videos (VideoSAUR [Zadaianchuk et al., 2023]). To extract
features for grouping, they use a powerful visual encoder pre-trained in a self-

13 1.2 Prior work and possible ways of going forward

supervised manner [Radford et al., 2021; Caron et al., 2021]. Using this ap-
proach, they showed that by optimizing in the highly semantic space of these
visual encoders, it is possible to discover objects on complex real-world image
datasets.

Sequential slots (Figure 1.7, middle), on the other hand, infer objects one
by one, usually through an attention “glimpse” [Schmidhuber and Huber, 1991;
Schmidhuber, 1993a] that is guided by a recurrent NN [Eslami et al., 2016; Ko-
siorek et al., 2018; Stanić and Schmidhuber, 2019; Yuan et al., 2019; Stelzner
et al., 2019; Burgess et al., 2019; Engelcke et al., 2020]. The sequential inference
mechanism removes the need for symmetry breaking that parallel slots have.
However, since the objects are ordered now, they are no longer permutation-
invariant, so this complicates the relational inference process. The earliest
method AIR [Eslami et al., 2016] learns to infer one object per iteration with
a hard-attention window on a given image, followed by SQAIR [Kosiorek et al.,
2018] which extends it to the sequential setting, R-SQAIR [Stanić and Schmid-
huber, 2019] which improves the relational reasoning ability of SQAIR, and
MoNET [Burgess et al., 2019] which uses a VAE and a soft-attention mechanism.
Due to recurrence, these slots may not always be fully independent, which limits
their modularity as building blocks. GENESIS [Engelcke et al., 2020] alleviates
this by not using recurrence for object representations, but only for the informa-
tion routing.

Spatial slots (Figure 1.7, right) infer each object from a particular part (e.g.
patch) of the image, which hinders their ability to represent arbitrarily shaped
objects. Approaches such as Relation Networks [Santoro et al., 2017; Zambaldi
et al., 2019; Stanić et al., 2021] consider slices of a feature tensor of a CNN as
a slot representation, whereas SPAIR [Crawford and Pineau, 2019], SPACE [Lin
et al., 2020] and SCALOR [Jiang* et al., 2020] use an explicit feature to indicate
presence of an object. Although these methods offer simplicity in the segrega-
tion process due to the fixed “attention pattern”, the composition modules need
to implicitly segregate objects to solve the task.

Relational Inference. Once the objects are inferred, we need to infer relations
[Battaglia et al., 2018] between them to make inferences such as prediction,
planning, and reasoning (the “composition problem” discussed in Section 1.1).
The early object-centric methods [Battaglia et al., 2016; Chang et al., 2017; van
Steenkiste et al., 2018] computed relations by learning a neural network that
“passes messages” between the representations of objects (here acting as nodes
in the graph) and outputs the edge (relation).

14 1.2 Prior work and possible ways of going forward

In their most general form, such relational networks are called message-
passing NNs (MPNNs) [Gilmer et al., 2017; Battaglia et al., 2018]. They up-
date object representations by computing and then aggregating incoming edge
representations. This update process can be repeated iteratively. MPNNs were
first introduced as a generalization of RNNs to graph-structured inputs [Sper-
duti and Starita, 1997; Gori et al., 2005], after which they were also explored
in a deep learning setting [Li et al., 2015]. MPNNs have been shown to lead
to improved generalization on tasks such as common sense physical reasoning
[Battaglia et al., 2016; Chang et al., 2017], hierarchical reasoning [Mrowca et al.,
2018; Stanić et al., 2021], visual question answering [Santoro et al., 2017], and
physical construction [Hamrick et al., 2018].

Graph Neural Networks (GNNs) [Scarselli et al., 2009; Pollack, 1990] are a
special kind ofMPNN that have both a node embedding and an edge embedding
NNs. Edges determine how messages are passed between nodes (objects). They
have been studied in diverse contexts, such as modeling dynamical systems,
learning intuitive physics, multi-object scenes, motion capture data, and multi-
agent systems [Goller and Kuchler, 1996; Küchler and Goller, 1996; Küchler,
2000; Scarselli et al., 2009; Bronstein et al., 2017; Watters et al., 2017; Raposo
et al., 2017; Santoro et al., 2017; Gilmer et al., 2017; Wang et al., 2018; van
Steenkiste et al., 2018; Kipf et al., 2018; Battaglia et al., 2018; Wang et al., 2018].

Graph Convolutional Networks (GCNs) [Kipf and Welling, 2016; Bronstein
et al., 2017; Hamilton et al., 2017] are GNNs that generalize convolutional
NNs. CNNs operate on a fixed grid, whereas GCNs operate on arbitrary graph
structures and use graph convolution operators to update node representations.
GCNs excel in tasks with graph-structured data, such as social networks [Hamil-
ton et al., 2017], citation networks [Kipf and Welling, 2016], knowledge base
completion tasks [Schlichtkrull et al., 2018], and biochemical modeling [At-
wood and Towsley, 2016]. However, GCNs require the knowledge of the in-
teraction graph, which may not be known apriori, e.g. when discovering the in-
teraction structure of molecules or when learning from raw visual data. Finally,
Battaglia et al. [2018] introduced a general framework that generalizes MPNNs
and GCNs, and additionally includes a global graph representation that interacts
with all nodes and edges.

Approaches based on self-attention, such as Transformers [Vaswani et al.,
2017] (which extend the unnormalized linear Transformers of 1991 [Schmidhu-
ber, 1992; Katharopoulos et al., 2020; Marcin Choromanski et al., 2021; Schlag
et al., 2021]), are a special type of MPNNs (and GNNs) [Battaglia et al., 2018]
that use self-attention to compute a weighted sum of the aggregated messages
to update the node representations. This facilitates dynamic information rout-

15 1.2 Prior work and possible ways of going forward

ing through relational inference in a “soft” manner, in the sense that attention
weights can be interpreted as representing relations, but they need to obey cer-
tain constraints, such as adding one. For example, non-local networks were
applied to images [Wang et al., 2018] where the attention coefficients model re-
lations between spatial slots. However, they use only a single attention “head”,
which limits the number of different interactions that these networks can learn.
Several works have explored the use of “multihead” attention transformers and
showed performance gains for relational reasoning about objects [Zambaldi
et al., 2019; van Steenkiste et al., 2018; Goyal et al., 2019; Santoro et al., 2018],
citation networks [Veličković et al., 2017], question answering [Dehghani et al.,
2018], and language modeling [Devlin et al., 2018; Brown et al., 2020].

Transformers can, however, be computationally inefficient, since they as-
sume a fully connected graph and require computing all possible messages.
Several approaches try to learn a sparse graph. For example, RIMs [Goyal et al.,
2019] (a special kind of RMC [Santoro et al., 2018]) infer a sparse graph and can
be seen as a GNN where the nodes are individual mechanisms that communi-
cate sparsely between each other.

Transformers, RIMs, and RMC learn relations implicitly through soft attention
coefficients. In some cases, it is desirable to dynamically infer explicit edge
representations, such as in NRI [Kipf et al., 2018], which infers edges between
moving particles (given their coordinates) as latent variables in a VAE [Kingma
and Welling, 2013; Rezende et al., 2014] setup. HRI [Stanić et al., 2021] further
extends the NRI to learn objects and edges directly from visual input and uses
a hierarchical inductive bias to infer a hierarchical graph.

Dynamic object representations. In general, the notion of what an object is is
ill-defined, as in the example of a bottle and a cap in Figure 1.5. Thus, ideally,
object-centric representations in NNs should have task-based top-down modu-
lation, e.g. through text in a weakly supervised setup or through actions or goals
in an RL setup.

Early approaches that could incorporate top-down feedback were based on
attractor networks such as Amari-Hopfield networks [Amari, 1972; Hopfield,
1982] (see also Grossberg’s work on biological networks [Grossberg, 1969,
2013]), Boltzmann machines [Ackley et al., 1985], and associative memory
[Kohonen, 2012] where an object representation is inferred by running a dy-
namical system until it converges to a stable attractor state. Since ambiguous
inputs can have multiple competing interpretations, top-down feedback can be
used to guide the system to a different attractor state. Attractor networks can be

16 1.2 Prior work and possible ways of going forward

difficult to train, so they have received little attention lately, with a few notable
exceptions [Mozer et al., 2018; Iuzzolino et al., 2019]. Since each weight par-
ticipates in each attractor, spurious (unintended) attractors and ill-conditioned
attraction basins may appear [Neto and Fontanari, 1997].

An alternative class of methods connects object discovery and text through
contrastive learning [Hénaff et al., 2022; Xu et al., 2022b]. Although they deal
with real-world images, they are only able to discover semantic groupings and
future work is necessary to enable instance/object-level groupings.

In an RL setup, S3A [Mott et al., 2019] uses attention to learn action-
modulated object-like representations, while OP3 [Veerapaneni et al., 2020]
extends IODINE to the sequential setting and uses actions to modulate object
representations in a model-based RL setup. C-SWM [Kipf et al., 2020] learns to
factor input into objects using actions and predicting the dynamics of the en-
vironment, and Biza et al. [2022] proposes attention mechanisms for binding
actions to objects. Another line of work [Tang et al., 2020; Tang and Ha, 2021;
Stanić et al., 2023] shows that agents with object-centric representations have
improved generalization and interpretability capabilities in (open-world) games.

Synchrony-based representations. Slot-based approaches have several con-
ceptual limitations. First, the binding information (i.e. addresses) about object
instances is maintained only by the constant number of slots, a hard-wired com-
ponent which cannot be adapted through learning. This restricts the ability of
slot-based models to flexibly represent a variable number of objects with vari-
able precision without tuning the slot size, number of slots, number of iterations,
etc. Second, the inductive bias used by the grouping module strongly enforces
the independence among all pairs of slots. This restricts individual slots to store
relational features at the object level and requires additional processing of slots
using a relational module, e.g., Graph Neural Networks [Battaglia et al., 2016;
Gilmer et al., 2017] or Transformer models [Vaswani et al., 2017; Schmidhuber,
1992; Schlag et al., 2021]. Third, iterative attention-based binding is compu-
tationally very demanding to train [Löwe et al., 2022]. Additionally, the spa-
tial broadcast decoder [Watters et al., 2019b] (a necessary component in these
models) requires multiple forward/backward passes to render the slot-wise re-
construction, resulting in a large memory overhead. Synchrony-based methods
can in principle address these limitations.

In synchrony-based approaches (Figure 1.8), each object shares the same
features, which are augmented by additional information (such as the phase of
a complex number). The additional information is then responsible for group-

17 1.2 Prior work and possible ways of going forward

Temporal Codes Complex Codes

Figure 1.8: Illustration of synchrony-based approaches: in temporal codes (mid-
dle) neurons that belong together are synchronized (i.e. they spike at the same
time), whereas in complex codes (right) the neurons that group together have
similar phase values.

ing. The grouping is usually continuous, which may facilitate the computation
of relational information, without requiring an additional relational mechanism.
However, extracting the grouping information necessitates an additional step,
such as clustering based on some similarity metric. Such grouping information
may help encode uncertainty about objects, while complicating situations when
a feature is active in multiple objects. Early approaches determined synchrony
through the firing patterns of spiking neurons [Singer, 2009] (the middle image
in Figure 1.8). Here, neurons that fire in synchrony are considered to represent
the same object [Milner, 1974; Von Der Malsburg, 1994; Singer, 1999]. The
drawback of these networks is that they are non-differentiable, since the tempo-
ral codes rely on spiking neurons.

An alternative to NNs based on temporal codes are complex-valued NNs
(right image in Figure 1.8). Recently, [Löwe et al., 2022; Stanić et al., 2023b]
revived this class of neural object binding models [Mozer et al., 1991; Mozer,
1998; Reichert and Serre, 2014]. Complex-valued NNs are conceptually very
promising. In principle, they address most of the conceptual challenges faced by
slot-based models. The binding mechanism is implemented through construc-
tive or destructive phase interference caused by the addition of complex-valued
activations. They store and process information about object instances in the
phases of complex activations that are more amenable to adaptation through
gradient-based learning. Furthermore, they can, in principle, store a variable
number of objects with variable precision by partitioning the phase components
of complex activations at varying levels of granularity. Additionally, synchrony-
based models can represent relational information directly in their distributed

18 1.2 Prior work and possible ways of going forward

representation, that is, distance in phase space yields an implicit relational met-
ric between object instances (e.g., inferring part-whole hierarchy from distance
in “tag” space [Mozer, 1998]). Lastly, training synchrony-based models is com-
putationally more efficient by two orders of magnitude [Löwe et al., 2022].
Building atop of CAE [Löwe et al., 2022], CtCAE [Stanić et al., 2023b] intro-
duced a novel contrastive learning method that increases separability in phase
values of pixels belonging to different objects and facilitates scaling synchrony-
based methods to multi-object color datasets.

1.2.2 Scaling Parameters, Data and Compute

Lately, a very active area of exploration has been on ways of scaling NNs in
the hope of solving all outstanding issues of NNs (including compositional rea-
soning and out-of-distribution generalization) in this manner. The SotA on real-
world visual question answering (VQA) tasks has been largely obtained by scal-
ing end-to-end vision and language models (VLMs) in terms of their size, training
data and compute [Alayrac et al., 2022; Chen et al., 2022b; Li et al., 2023; Driess
et al., 2023; Chen et al., 2023b,a].

One of the first VLMs Flamingo [Alayrac et al., 2022] used a frozen pretrained
language model of up to 70B parameters and a frozen pretrained image encoder
with 435M parameters and trained only a “cross-attention” module that served
as an interface between them. Since then, effort has been put mainly into scaling
both the image and the language models. GIT [Wang et al., 2022a] used a 300M
language model and scaled the image encoder to 4.8B parameters. PaLI [Chen
et al., 2022b] jointly scaled both components, the language model to 17B and
the image encoder to 4B parameters. PaLI-X [Chen et al., 2023b] continued this
trend of scaling the total number of parameters to 55B using an image encoder
with 22B parameters. PaLM-E scaled the number of total parameters in the VLM
to 562B by integrating the 540B PaLM [Chowdhery et al., 2022] and the 22B Vi-
sion Transformer [Dosovitskiy et al., 2020; Dehghani et al., 2023]. On the other
hand, BLIP-2 [Li et al., 2023] achieved SotA performance in various tasks with
a 12B VLM and PaLI-3 [Chen et al., 2023b] introduced a significantly smaller
VLM with 5B total parameters that achieves competitive performance with SotA
models on various VLM benchmarks.

These models are typically pretrained on large amounts of data and then
fine-tuned for the best performance on the downstream tasks. However, even
the largest VLMs struggle with tasks that require compositional reasoning, the
ability to generalize, fine-grained spatial capabilities, and counting [Bugliarello
et al., 2023; Paiss et al., 2023; Hsieh et al., 2023; Yuksekgonul et al., 2022; Zhao

19 1.2 Prior work and possible ways of going forward

et al., 2022; Hendricks and Nematzadeh, 2021]. Further scaling makes them
even more data- and compute-hungry; therefore, it is unclear whether scaling
alone can solve these tasks. For these reasons, we remain highly skeptical about
the potential of this hypothesis and do not pursue these directions in this thesis.

1.2.3 Modular Networks and LLMs as controllers

An alternative approach to solving tasks that require compositional reasoning
and out-of-distribution generalization is to decompose tasks into subtasks, solve
them individually, and then combine the answers to solve the original task. This
is reminiscent of the way humans approach compositional problems. According
to Daniel Kahneman’s framework [Kahneman, 2017], our thought process can
be thought of as consisting of two mechanisms: System 1 and System 2. System
2 is the “slow”, “analytical” system that can decompose the task into subtasks,
while System 1 is the “fast”, “reactive” system that solves individual tasks such as
recognizing patterns. The early work on task decomposition was pioneered by
Neural Module Networks (NMNs) [Andreas et al., 2016; Johnson et al., 2017;
Hu et al., 2017]. NMNs are trained end-to-end, using supervised or reinforce-
ment learning. NMNs are designed to have several modules and the hope is that
during training, each module will learn a different functionality, which will then
be reusable across tasks. However, these models have a number of drawbacks:
program generation requires hand-tuned parsers, and they require optimization
through reinforcement learning (e.g., REINFORCE [Williams, 1992]), which is
often unstable. Learning all modules end-to-end hinders their ability to general-
ize [Bahdanau et al., 2018] and sometimes leads to a mode “collapse”, where
some modules take over all the work and other modules are never activated, or
modules that do not learn intended functionalities [Subramanian et al., 2020].
Additionally, they sometimes require supervision for program learning, which
is difficult to obtain at scale.

Recently, an alternative approach became prominent in the literature, the
one based on “tool use” [Parisi et al., 2022; Schick et al., 2023], in particular for
structured reasoning in the natural language domain [Madaan et al., 2022; Wang
et al., 2023c; Gao et al., 2023; Chen et al., 2022a]. In tool use (see Figure 1.9
for an example of tool use for visual reasoning), an LLM is used as a controller
(akin to System 2) to solve the task by orchestrating a set of tools (such as an
object detector, akin to System 1).

In the domain of using LLMs as controllers for visual reasoning, PICa [Yang
et al., 2022] solves a knowledge-based VQA task by first extracting an object
and captions from the image and then querying GPT-3 with this information

20 1.2 Prior work and possible ways of going forward

Query

Code LLM

Visual
code

API

Visual tools

Answer
[x1, x2, y1, y2]

Visual
routines

examples
In-context

Figure 1.9: An example framework of tool use for visual reasoning [Surís et al.,
2023; Stanić et al., 2024]. Here, a code-generating LLM takes as input a query
(e.g. “second skier from the right), an API for tool use (e.g. Python documenta-
tion for visual tools) and (optionally) a number of query-code pairs as in-context
examples in the prompt. The generated (visual) code takes the image as input,
executes and returns the answer to the query (here a bounding box coordinates).

and in-context examples to answer a question. Socratic Models [Zeng et al.,
2022], HuggingGPT [Shen et al., 2023], and Societies of Mind [Zhuge et al.,
2023] compose vision and language models to “communicate” in a fixed “proto-
col” and solve tasks such as image captioning, visual question answering, image
generation, and robot planning.

On the other hand, models such as VisProg [Gupta and Kembhavi, 2023],
ViperGPT [Surís et al., 2023], and CodeVQA [Subramanian et al., 2023] show
great promise in solving visual question answering by using an LLM orchestrating
tool use by writing a (Python) program. During execution, the program calls
individual vision modules (such as object detector, depth estimator) through an
API that is provided in the prompt. For example, to answer “what is the color of
the shirt of the second person to the left?”, the program would detect all persons,
sort them horizontally, take the second person, detect their shirt, and then query
its color. These models showed great performance and achieved SotA on tasks
such as compositional visual question answering, visual grounding, and video
temporal reasoning. Furthermore, by their construction, they are interpretable,

21 1.2 Prior work and possible ways of going forward

offer strong generalization, mathematical and reasoning skills, compositional,
adaptable (individual models can be simply swapped with better models) and
do not require gradient-based training.

However, in their current form, these models heavily rely on human engi-
neering of in-context examples (ICEs) in the prompt. Moreover, ICEs are often
dataset- and task-specific. To generate them, significant labor by highly skilled
workers is required. For this reason, we argue that these methods should not be
called zero-shot in their current form. Some promising ways of going beyond
human prompt engineering are automatizing the generation of in-context exam-
ples, or enabling LLMs to “self-correct” their own output [Stanić et al., 2024].
Below, we provide an overview of the related work on automatizing prompt
engineering and “self-correcting” LLMs.

Automatizing prompt engineering. Vast literature shows that prompt format
and contents are often important for achieving good performance with an LLM
[Reynolds and McDonell, 2021; Zhao et al., 2021; Lu et al., 2021; Moradi and
Samwald, 2021; Madaan and Yazdanbakhsh, 2022; Wei et al., 2023]. A prompt
typically consists of a task description (in natural language), in-context examples
(e.g. query-code in ViperGPT [Surís et al., 2023]) and an API (in the case where
LLMs write a program).

Various prompting techniques have been engineered, such as Chain-of-
Thought prompting [Wei et al., 2022], Self-Consistency [Wang et al., 2022c],
Tree of Thoughts [Yao et al., 2023], Graph of Thoughts [Besta et al., 2023], Plan-
and-Solve Prompting [Wang et al., 2023a], Least-to-Most Prompting [Zhou et al.,
2022a], etc. All these techniques rely on human prompt engineering, in partic-
ular, on in-context examples.

On the other hand, some methods try to automatize prompt engineering.
They sometimes use gradient-based optimization [Shin et al., 2020; Gao et al.,
2020; Wen et al., 2023] and some approaches require only API access to the
model [Xu et al., 2022a; Prasad et al., 2022].

Other works use LLMs for prompt optimization. APE [Zhou et al., 2022b]
first generates instructions with an LLM, then selects instructions with the high-
est accuracy, and uses them for future LLM prompts. APO [Pryzant et al., 2023]
generates feedback with an LLM that informs how to update the previous instruc-
tion. OPRO [Yang et al., 2023a] uses an LLM to generate new instructions in
each optimization step, asking the LLM to improve task accuracy by changing
task instructions, which requires determining the score on a small set of labeled
examples and providing it in the meta-prompt.

22 1.3 Contributions and organization

Promptbreeder [Fernando et al., 2023] goes a step further and proposes a self-
referential self-improvement LLM using a meta-prompt that controls the genera-
tion of the main (task) prompt and evolves both via mutation. More importantly,
Promptbreeder shows some surprising results such that a simple prompt “SO-
LUTION” outperforms all previous approaches. This further demonstrates the
sensitivity of LLMs and the importance of automatizing the prompt engineering
process. Common to all above frameworks for automatizing prompting is that
they automatize the “task description” part of the prompt. Other approaches
[Stanić et al., 2024] automatize the generation of in-context examples, which
might have an even greater influence on the performance of the LLM.

LLMs and self-correction. In the LLM literature, there have been mixed find-
ings on the ability of LLMs to critique and self-correct their own reasoning and
outputs. Self-Refine [Madaan et al., 2023] provides feedback to the LLM of the
previously generated output, which is then refined. Several other approaches
show benefits of providing feedback to LLM in improving reasoning [Shinn et al.,
2023; Madaan et al., 2023], code generation [Chen et al., 2023c; Olausson et al.,
2023; Chen et al., 2023], improving LLM alignment [Bai et al., 2022; Ganguli
et al., 2023], etc.

On the other hand, there has been increasing evidence that LLMs cannot self-
correct reasoning yet [Huang et al., 2023; Stechly et al., 2023; Valmeekam et al.,
2023], unless they receive external feedback, which usually requires access to
ground truth labels. Other work [Stanić et al., 2024] also found that providing
the previous question and code as feedback to the model did not improve the
results, but that it is possible to improve performance by tuning hyperparameters
on the fly.

1.3 Contributions and organization

In this thesis, we make several contributions on learning object-centric repre-
sentations from raw visual data and on using LLMs as programmers for visual
reasoning (tool use). In terms of object-centric representations, we introduce
novel methods for all types of slots (parallel, sequential, and spatial), as well
as a novel synchrony-based method for learning object representations. We
develop novel methods in both the unsupervised and RL setup.

In Chapter 2 we present a method that improves the reasoning and general-
ization abilities of a sequential slots model. Here, we identify a key limitation of
sequential slots methods that compute interactions between objects in a sequen-

23 1.3 Contributions and organization

tial manner, which limits their predictive power. We address this by endowing
a sequential slots model with a module with strong relational inductive bias
that computes in parallel pairwise interactions between inferred objects. This
model leads to better prediction on videos of interacting objects and improved
combinatorial generalization.

Since many real-world objects have hierarchical structures, in Chapter 3 we
introduce a method (called Hierarchical Relational Inference (HRI)) that is capa-
ble of inferring nodes and edges of a hierarchical graph directly from raw visual
data. Our approach to physical reasoning models objects as hierarchies of parts
that may locally behave separately but also act more globally as a single whole.
For this, HRI uses spatial slots. Unlike prior approaches, our method learns in an
unsupervised fashion directly from raw visual images to discover objects, parts,
and their relations. It explicitly distinguishes multiple levels of abstraction and
improves over a strong baseline in modeling synthetic and real-world videos.

As discussed above, (hierarchical) decomposition into objects is generally
task dependent, and sometimes it is infeasible and undesirable to decompose a
scene into all hierarchy levels. For these reasons, it might be more beneficial to
modulate objects with task information, such as words (in VQA) or actions/goals
(in RL). In Chapter 4 we introduce and study object-centric agents in an RL
setting. Starting from the Crafter benchmark, a 2D open-world survival game,
we also introduce a new set of environments that evaluate out-of-distribution
generalization. In particular, they evaluate the agent’s ability to generalize to
previously unseen objects or their frequencies of appearance. We show that
current agents struggle to generalize, whereas our novel object-centric agents
improve over strong baselines. The object-centric agents that we introduce are
based on both parallel slots and spatial slots. We achieve new SotA performance
in these environments and provide critical insights that are of general interest for
future work.

In Chapter 5 we look at synchrony-based methods, an alternative to slot-
based methods that have the potential to address several of their limitations.
The main limitations of slot-based methods are that the number of slots is hard-
wired; all slots have equal capacity; training has high computational cost; there
are no object-level relational factors within slots. Synchrony-based models can,
in principle, address these limitations by using complex-valued activations that
store binding information in their phase components. However, working ex-
amples of such synchrony-based models have been developed only very re-
cently and are still limited to toy grayscale datasets and simultaneous storage
of less than three objects in practice. In Chapter 5 we introduce architectural
modifications and a novel contrastive learning method that greatly improve the

24 1.3 Contributions and organization

state-of-the-art synchrony-based model. For the first time, we obtain a class
of synchrony-based models capable of discovering objects in an unsupervised
manner in multi-object color datasets and simultaneously representing more
than three objects.

Finally, in Chapter 6 we look at “tool use” and introduce a framework for
compositional visual reasoning. Visual reasoning with LLMs addresses the lim-
itations of end-to-end models by decomposing the task and solving subtasks
by orchestrating a set of (visual) tools. Recently, these models achieved great
performance on tasks such as compositional visual question answering, visual
grounding, and video temporal reasoning. Nevertheless, in their current form,
these models heavily rely on human engineering of in-context examples in the
prompt, which are often dataset- and task-specific and require significant labor
by highly skilled programmers. In this work, we present a framework that miti-
gates these issues by introducing spatially and temporally abstract routines and
by leveraging a small number of labeled examples to automatically generate in-
context examples, thereby avoiding human-created in-context examples. On a
number of visual reasoning tasks, we show that our framework leads to consis-
tent gains in performance, makes LLMs as controllers setup more robust, and
removes the need for human engineering of in-context examples.

Lastly, in Chapter 7 we provide a summary of our contributions and offer
promising directions going forward.

Chapter 2

Improving Relational Reasoning In
Sequential Slots Models

Numerous studies [Xu and Carey, 1996; Kellman and Spelke, 1983; Spelke et al.,
1995; Baillargeon et al., 1985; Saxe and Carey, 2006] show that infants quickly
develop an understanding of intuitive physics, objects and relations in an unsu-
pervised manner. To facilitate the solution of real-world problems, intelligent
agents should be able to acquire such knowledge [van Steenkiste et al., 2019].
However, artificial neural networks are still far from human-level understanding
of intuitive physics.

Existing approaches to unsupervised learning about objects and relations
from visual data can be categorized into either parallel [Greff et al., 2016, 2017,
2019], sequential [Schmidhuber and Huber, 1991; Schmidhuber, 1993a; Eslami
et al., 2016; Kosiorek et al., 2018; Crawford and Pineau, 2019; Burgess et al.,
2019; Yuan et al., 2019] or spatial [Santoro et al., 2017; Zambaldi et al., 2019;
Crawford and Pineau, 2019; Stanić et al., 2021], depending on the core mecha-
nism responsible for inferring object representations from a single image. One
model from the former group is Tagger [Greff et al., 2016] which applies the
Ladder Network [Rasmus et al., 2015] to perform perceptual grouping. RTag-
ger [Prémont-Schwarz et al., 2017] replaces the Ladder Network by a Recurrent
Ladder Network, thus extending Tagger to sequential settings. NEM [Greff et al.,
2017] learns object representations using a spatial mixture model and its rela-
tional version R-NEM [van Steenkiste et al., 2018] endows it with a parallel rela-
tional mechanism. The recently proposed IODINE [Greff et al., 2019] iteratively
refines inferred objects and handles multi-modal inputs.

This chapter is based on “Relational Sequential Attend, Infer, Repeat” [Stanić and Schmid-
huber, 2019] paper, which was presented as a workshop paper at NeurIPS 2019.

25

26 2.1 Relational Sequential Attend Infer Repeat

On the other hand, the sequential attention model AIR [Eslami et al., 2016]
learns to infer one object per iteration over a given image. Contrary to NEM,
it extracts object glimpses through a hard attention mechanism [Schmidhuber
and Huber, 1991] and processes only the corresponding glimpse. Furthermore,
it builds a probabilistic representation of the scene to model uncertainty. Many
recent models have AIR as the core mechanism: SQAIR [Kosiorek et al., 2018]
extends AIR to sequential settings, similarly does DDPAE [Hsieh et al., 2018].
SPAIR [Crawford and Pineau, 2019] scales AIR to scenarios with many objects
and SuPAIR[Stelzner et al., 2019] improves speed and robustness of learning in
AIR. The recent MoNET [Burgess et al., 2019] also uses a VAE and a recurrent
neural network (RNN) to decompose scenes into multiple objects. These meth-
ods usually model relations by a sequential relational mechanism such as an
RNN which limits their relational reasoning capabilities[Battaglia et al., 2018].

Here we present Relational Sequential Attend, Infer, Repeat (R-SQAIR) to
learn a generative model of intuitive physics from video data. R-SQAIR builds
on SQAIR which we augment by a mechanism that has a strong relational induc-
tive bias [Battaglia et al., 2016; van Steenkiste et al., 2018; Santoro et al., 2018].
Our explicit parallel model of pairwise relations between objects is conceptually
simpler than a sequential RNN-based model that keeps previous interactions in
its memory and cannot directly model the effects of interactions of previously
considered objects. Our experiments demonstrate improved generalization per-
formance of trained models in new environments.

2.1 Relational Sequential Attend Infer Repeat

Attend, Infer, Repeat (AIR) [Eslami et al., 2016] is a generative model that ex-
plicitly reasons about objects in a scene. It frames the problem of representing
the scene as a probabilistic inference in a structured VAE. At the core of the
model is an RNN that processes objects one at a time and infers latent variables
z = {zi

what, zi
where, z

i
pres}ni=1, where n ∈ N is the number of objects. The con-

tinuous latent variable zwhat ∈ Rd encodes the appearance of the object in the
scene (where d ∈ N is the hidden size) and zwhere ∈ R4 encodes the coordinates
according to which the object glimpse is scaled and shifted by a Spatial Trans-
former [Jaderberg et al., 2015]. Given an image x ∈ Rh×w×c, where h,w, c ∈ N
are height, width, and the number of channels, the generative model of AIR is

27 2.1 Relational Sequential Attend Infer Repeat

defined as follows:

pθ(x) =
N∑

n=1

pθ(n)

∫
pzθ(z|n)pxθ(x|z)dz, (2.1)

where pθ(n) = Geom(n | θ) represents the number of objects present in the
scene, pzθ(z|n) captures the prior assumptions about the underlying object and
pxθ(x|z) defines how it is rendered in the image. In general, the inference for
Equation 2.1 is intractable, so [Eslami et al., 2016] employs amortized variational
inference using a sequential algorithm, where an RNN is run for N steps to infer
latent representation of one object at a time. The variational posterior is then:

qϕ(z | x) = qϕ
(
zn+1

pres = 0 | z1:n, x
) n∏

i=1

qϕ
(
zi, zipres = 1 | z1:i−1, x

)
, (2.2)

where qϕ is a neural network which outputs the parameters of the latent distribu-
tions: the mean and standard deviation of a Gaussian distribution for zwhat and
zwhere and the probability parameter of the Bernoulli distributed zpres ∈ [].

Relational Sequential Attend, Infer, Repeat (R-SQAIR) augments SQAIR
through a parallel relational mechanism. SQAIR extends AIR to the sequen-
tial setting by leveraging the temporal consistency of objects using a state-space
model. It has two phases: Discovery (DISC) and Propagation (PROP). PROP
is active from the second frame in the sequence, propagating or forgetting ob-
jects from the previous frame. It does so by combining an RNN, which learns
the temporal dynamics of each object, with the AIR core which iterates over
previously propagated objects (explaining away phenomena). DISC phase uses
the AIR core, conditioned on propagated objects, to discover new appearances
of objects. For a full description of AIR and SQAIR, we refer to previous work
[Eslami et al., 2016; Kosiorek et al., 2018].

R-SQAIR retains the strengths of its predecessors and improves their rela-
tional capabilities. More specifically, SQAIR relies on the RNN core of AIR to
model the relations. However, an RNN has only a weak relational inductive bias
[Battaglia et al., 2018], as it needs to compute pairwise interactions between ob-
jects sequentially, iterating over them in a specific order. R-SQAIR, on the other
hand, employs networks with strong relational inductive bias which can model
arbitrary relations between objects in parallel. To construct conceptually simple
yet powerful architectures that support combinatorial generalization, we use the
following two methods: Interaction Network (IN) [van Steenkiste et al., 2018]
and Relational Memory Core (RMC) [Santoro et al., 2018].

28 2.1 Relational Sequential Attend Infer Repeat

Figure 2.1: Interaction Network of R-
NEM [van Steenkiste et al., 2018].

Figure 2.2: Relational Memory Core
[Santoro et al., 2018].

The R-SQAIR generative model is built by extending the PROP module of
SQAIR to include the relations γt = Γ(zt−1) ∈ Rn×n×dr , where Γ is the relational
module, n ∈ N is the number of objects, dr ∈ N is the dimensionality of the
relations vector, and zt−1 are object representations from the previous timestep,
defined as follows:

p(x1:T , z1:T) = pD(zD1
1)

T∏
t=2

pD(zDt
t |zPt

t)pP (zPt
t |γt)pθ(xt|zt), (2.3)

The discovery prior pD(zDt
t |zPt

t) samples latent variables zDt
t for new objects that

enter the frame, by conditioning on propagated variables zPt
t . The propagation

prior pP (zPt
t |γt) samples latent variables for objects that are propagated from the

previous frame and removes those that disappear. Both priors are learned during
training. We recover the original SQAIR model for γt = zt−1. The inference
model is therefore as follows:

qϕ(z1:T | x1:T) =
T∏
t=1

qDϕ
(
zDt
t | xt, zPt

t

) ∏
i∈Ot−1

qPϕ
(
zit | γt

i, hi
t

)
, (2.4)

where hi
t are hidden states of the temporal and AIR core RNNs. Discovery qDϕ

is essentially the posterior of AIR. Again, the difference to SQAIR lies in the
propagation module qPϕ , which receives the relations γt as input.

2.1.1 Relational Module

Interaction Network Our first relational module is the Interaction Network
(IN) of R-NEM [van Steenkiste et al., 2018], depicted in Figure 2.1, which is
closely related to Interaction Networks [Battaglia et al., 2016; Watters et al.,

29 2.1 Relational Sequential Attend Infer Repeat

2017]. Here, the effect on object k of all other objects i ̸= k is computed
by the relational module γt = ΓIN(zt−1), which in the case of IN is defined as
follows (for simplicity we drop time indices):

ẑk = f(zk), ξk,i = g([ẑk; ẑi]), Ek =
∑
i ̸=k

gatt(ξk,i)·geff(ξk,i), γk = [zk; ek], (2.5)

where zi = {zi
what, zi

where, z
i
pres} from the previous time step. First, each object zi

is transformed using an MLP f to obtain ẑi, which is equivalent to a node embed-
ding operation in a graph neural network. Then each pair (ẑk, ẑi) is processed
by another MLP g, which corresponds to a node-to-edge operation by encod-
ing the interaction between object k and object i in the embedding ξk,i ∈ Rdξ ,
where dξ ∈ N is the embedding dimension. Note that the computed embedding
is directional. Finally, an edge-to-node operation is performed, where the effect
on the object k is calculated by summing the individual effects geff(ξk,i) ∈ Rde of
all other objects i on the particular object k. Note that the sum is weighted by an
attention coefficient gatt(ξk,i) ∈ Rde , where de is a positive integer, which allows
each individual object to consider only particular interactions. This technique
also yields better combinatorial generalization to a larger number of objects, as
it controls the magnitude of the sum.

Relational Memory Core We compare the effects modeled by IN to the ef-
fects learned by a Relational Memory Core (RMC), γt = ΓRMC(zt−1). RMC
(Figure 2.2) learns to compartmentalize objects into memory slots, and can keep
the state of an object and combine this information with the current object’s rep-
resentation zt. This is achieved by borrowing ideas from memory-augmented
networks [Sukhbaatar et al., 2015; Graves et al., 2014, 2016] and interpreting
memory slots as object representations. The interactions between objects are
then computed by a multi-head self-attention mechanism [Vaswani et al., 2017].
Finally, recurrence for sequential interactions is introduced, resulting in an ar-
chitecture that is similar to a 2-dimensional LSTM[Hochreiter and Schmidhuber,
1997], where rows of the memory matrix represent objects. The model parame-
ters are shared for each object, so the number of memory slots can be changed
without affecting the total number of model parameters. For a full description,
we refer to previous work [Santoro et al., 2018].

30 2.2 Experiments

Figure 2.3: R-SQAIR trained on sequence of 4 bouncing balls (top rows) and evaluated
on 6-8 bouncing balls.

Figure 2.4: Log-likelihood and relational log-likelihood of R-SQAIR and SQAIR on the
bouncing balls task.

2.2 Experiments

We analyze the physical reasoning capabilities of R-SQAIR on the bouncing
balls dataset, which consists of video sequences of 64x64 images. As done in
SQAIR experiments, we crop the central 50x50 pixels from the image, such that
a ball can disappear and later reappear. Although visually simple, this data set
contains highly complex physical dynamics and has previously been used for
similar studies (R-NEM [van Steenkiste et al., 2018]). The method is trained in
a SQAIR-like fashion by maximizing the importance-weighted evidence lower
bound IWAE [Burda et al., 2015], with 5 particles and the batch size of 32. Cur-
riculum learning starts at sequence length 3 which is increased by one every
10000 iterations, up to a maximum length of 10. Early stopping is performed
when the validation score has not improved for 10 epochs.

The qualitative evaluation of R-SQAIR is present in Figure 2.3. Each column
represents one time step in the video. The first row is about the R-SQAIR model
trained and evaluated on videos with 4 balls, with object representations high-
lighted by different color bounding boxes. In the second row, the same model
is evaluated on datasets with 6-8 balls. Note that R-SQAIR disentangles objects
already in the first few frames and later only refines the learned representations.
At each time step, it computes up to k = 4 object representations, by considering

31 2.2 Experiments

objects from the previous frame and the learned dynamics.

For all SQAIR hyperparameters, we use default values, except for the dimen-
sionality of latent variable zwhat, which is set to 5 instead of 50. This reflects the
low visual complexity of individual objects in the scene. For similar reasons, the
embedding dimensionality of IN that we use is also set to 5. We use a version
of the IN module with attention coefficients to compute the weighted sum of
the effects. In total, this adds 9 389 parameters to the 2 726 166 of the default
SQAIR implementation. It also suggests that improved performance is a result
of learning a better propagation prior rather than just increasing the number of
model parameters.

RMC has more hyperparameters to choose from. We use self-attention with
4 heads, each of dimensionality 10. The number of memory slots is 4 and co-
incides with the total number of sequential attention steps we perform. Finally,
RMC can perform several computations of attention per time step, where each
corresponds to a message passing phase. As we are interested only in collisions,
we computed attention only once per time step. This results in 98 880 param-
eters. Comparing the size of the SQAIR model, we obtain a conclusion similar
to the one for the case of IN.

Note that the last frames in Figure 2.3 are sampled from the learned propa-
gation prior. This enables us to evaluate the role of the relational module, as
it is responsible for learning the object dynamics. Moreover, as the models are
stochastic, we train 5 models for each architecture and sample 5 different last
frames. We compare models in terms of log-likelihood of data and relational
log-likelihood, which takes into account only the objects that are currently col-
liding (ground truth available in the dataset). The evaluation on the test set with
4 balls shows an increase in average data log-likelihood from 399.5 achieved by
SQAIR (0.21 relational) to 429.2 by R-SQAIR(IN) (relational 1.95) and 457.32
by R-SQAIR(RMC) (relational 3.62). The error bars in Figure 2.4 represent the
standard deviation of the stochastic samples from the trained models.

We test the generalization of R-SQAIR by evaluating the models trained
on sequences with 4 balls on a test set with videos of 6-8 balls. Both qual-
itative (Figure 2.3 bottom row) and quantitative results show that R-SQAIR is
capable of generalizing, with an increase in the relational log-likelihood from
-164.1 achieved by SQAIR to -96.7 achieved by R-SQAIR(IN) and -97 achieved
by R-SQAIR(RMC). Larger margins between relational losses of R-SQAIR and
SQAIR in the test set with 6-8 balls suggest higher generalization capabilities of
R-SQAIR.

32 2.3 Conclusion and Discussion

2.3 Conclusion and Discussion

Graph neural networks are promising candidates for combinatorial generaliza-
tion, a central theme of AI research [Battaglia et al., 2018; van Steenkiste et al.,
2019]. We show that a sequential attention model can benefit from incorpo-
rating an explicit relational module, which infers pairwise object interactions
in parallel. Without retraining, the model generalizes to scenarios with more
objects. Its learned generative model is potentially useful as part of a world sim-
ulator [Schmidhuber, 1990b; Schmidhuber, 1990; Ha and Schmidhuber, 2018;
Watters et al., 2019a].

At the time of writing this thesis, the significance of this chapter is more his-
torical, rather than presenting a model that is still the state-of-the-art model on
some dataset. It shows where the field of object-centric representation learn-
ing was only a few years ago. Since then, we have gone from visually simple
grayscale scenes to real-world scenes [Elsayed et al., 2022; Seitzer et al., 2022;
Zadaianchuk et al., 2023]. However, the algorithmic findings of our paper stood
the test of time. Current SotA models for prediction infer pairwise object inter-
actions in parallel, typically using Transformers.

Chapter 3

Learning Hierarchical Object
Representations

Common-sense physical reasoning in the real world involves making predictions
from complex high-dimensional observations. Humans somehow discover and
represent abstract objects to compactly describe complex visual scenes in terms
of ‘building blocks’ that can be processed separately [Spelke and Kinzler, 2007].
They model the world by reasoning about dynamics of high-level objects such
as footballs and football players and the consequences of their interactions. It
is natural to expect that artificial agents operating in the real world will benefit
from a similar approach [Lake et al., 2015; Greff et al., 2020].

Real world objects vary greatly in terms of their properties. This compli-
cates modelling their dynamics. Some have deformable shapes, e.g., clothes,
or consist of parts that support a variety of complex behaviors, e.g., arms and
fingers of a human body. Many objects can be viewed as a hierarchy of parts
that locally behave somewhat independently, but also act more globally as a
single whole [Mrowca et al., 2018; Lingelbach et al., 2020]. This suggests to
simplify models of object dynamics by explicitly distinguishing multiple levels
of abstraction, separating hierarchical sources of influence.

Prior approaches to common-sense physical reasoning explicitly consider ob-
jects and relations at a representational level, e.g., [Chang et al., 2017; Battaglia
et al., 2016; van Steenkiste et al., 2018; Kipf et al., 2018]. They decompose
complex physical interactions in the environment into pairwise interactions be-
tween objects, modelled efficiently by Graph Networks [Battaglia et al., 2018].
Here the representation of each object is updated at each time step by propagat-

This chapter is based on “Hierarchical Relational Inference” [Stanić et al., 2021] paper,
which was published at AAAI 2021.

33

34

Groundtruth HRI NRI LSTM

Figure 3.1: HRI outperforms baselines at modeling interacting objects that are
coupled via hierarchically organized springs.

ing ‘messages’ through the corresponding interaction graph. While recent ap-
proaches (specifically) address the challenge of learning object representations
from raw visual data [Greff et al., 2017; Kosiorek et al., 2018; van Steenkiste
et al., 2018; Burgess et al., 2019; Greff et al., 2019] and of dynamically infer-
ring relationships between objects [van Steenkiste et al., 2018; Kipf et al., 2018;
Goyal et al., 2019; Veerapaneni et al., 2020], reasoning about the dynamics
and interactions of complex objects remains difficult without incorporating ad-
ditional structure. On the other hand, approaches that consider part-based rep-
resentations of objects and hierarchical interaction graphs lack the capacity to
learn from raw images and dynamically infer relationships [Mrowca et al., 2018;
Lingelbach et al., 2020].

Here we propose Hierarchical Relational Inference (HRI), a novel approach
to common-sense physical reasoning capable of learning to discover objects,
parts, and their relations, directly from raw visual images in an unsupervised
fashion. HRI extends Neural Relational Inference (NRI) [Kipf et al., 2018], which
infers relations between objects and models their dynamics while assuming ac-
cess to their state (e.g., obtained from a physics simulator). HRI improves upon
NRI in two regards. Firstly, it considers part-based representations of objects
and infers hierarchical interaction graphs to simplify modeling the dynamics
(and interactions) of more complex objects. This necessitates a more efficient
message-passing approach that leverages the hierarchical structure, which we
will also introduce. Secondly, it provides a mechanism for applying NRI (and
thereby HRI) to raw visual images that infers part-based object representations
spanning multiple levels of abstraction.

Our main contributions are as follows: (i) We introduce HRI, an end-to-end
approach for learning hierarchical object representations and their relations di-
rectly from raw visual input. (ii) It includes novel modules for extracting a hier-
archical part-based object representations and for hierarchical message passing.

35 3.1 Method

... ...

CNN

Encoder
Visual

CNN

Encoder
Visual

...... ...

Inferred Objects

EdgesObject Pairs
Relational Inference

Dynamics Predictor

Hierarchical Message PassingObjects

...

Predicted Objects

Visual
Decoder

H
ie

ra
rc

h
ic

a
l
O

b
je

ct
 S

lo
ts

Bot
to

m
-u

p

WS

Top-down

Bo
tt

om
-u

p

Top-dow
nWS

Figure 3.2: The proposed HRI model. An encoder infers part-based object repre-
sentations, which are fed to a relational inference module to obtain a hierarchi-
cal interaction graph. A dynamics predictor uses hierarchical message-passing
to make predictions about future object states. Their ‘rendering’, produced by a
decoder, is compared to the next frame to train the system.

The latter can operate on a (hierarchical) interaction graph more efficiently by
propagating effects between all nodes in the graph in a single message-passing
phase. (iii) On a trajectory prediction task from object states, we demonstrate
that the hierarchical message passing module is able to discover the latent hi-
erarchical graph and greatly outperforms strong baselines (Fig. 3.1). (iv) We
also demonstrate how HRI is able to infer objects and relations directly from
raw images. (v) We apply HRI to synthetic and real-world physical prediction
tasks, including real-world videos of moving human bodies, and demonstrate
improvements over strong baselines.

3.1 Method

Motivated by how humans learn to perform common-sense physical reasoning,
we propose Hierarchical Relational Inference (HRI). It consists of a visual en-
coder, a relational inference module, a dynamics predictor, and a visual de-
coder. All are trained end-to-end in an unsupervised manner. First, the visual
encoder produces hierarchical (i.e. part-based) representations of objects that
are grounded in the input image. This representation serves as input to the re-
lational inference module, which infers pairwise relationships between objects
(and parts) given by the edges in the corresponding interaction graph. The dy-
namics predictor performs hierarchical message-passing on this graph, using the
learned representations of parts and objects for the nodes. The resulting predic-
tions (based on the updated representations) are then decoded back to image

36 3.1 Method

space using the visual decoder, to facilitate an unsupervised training objective.
An overview is shown in Figure 3.2. We note that HRI consists of standard build-
ing blocks (CNNs, RNNs, and GNNs) that are well understood. In this way, we
add only a minimal inductive bias, which helps facilitate scaling to more com-
plex real-world visual settings, as we will demonstrate.

3.1.1 Inferring Objects, Parts, and their Relations

To make physical predictions about a stream of complex visual observations, we
will focus on the underlying interaction graph. It distinguishes objects or parts
(corresponding to nodes) and the relations that determine interactions between
them (corresponding to the edges), which must be inferred. Using this more
abstract (neuro-symbolic) representation of a visual scene allows us to explic-
itly consider certain invariances when making predictions (e.g., the number of
objects present) and reasoning about complex interactions in terms of simpler
pair-wise interactions between objects.

Inferring Object/Part Representations The task of the visual encoder is to infer
separate representations for each object from the input image. Intuitively, these
representations contain information about its state, i.e., its position, behavior and
appearance. In order to relate and compare these representations efficiently, it
is important that they are described in a common format. Moreover, since we
are concerned with a hierarchical (i.e. part-based) representation of objects, we
also require a mechanism to relate the part representations to the corresponding
object representation.

Here we address these challenges by partitioning the feature maps learned
by a CNN according to their spatial coordinates to obtain object representa-
tions. This is a natural choice, since CNNs are known to excel at representation
learning for images [Ciresan et al., 2012; Krizhevsky et al., 2012] and because
weight-sharing across spatial locations ensures that the resulting object represen-
tations are described in a common format. Indeed, several others have proposed
to learn object representations in this way [Santoro et al., 2017; Zambaldi et al.,
2019]. Here, we take this insight a step further and propose to learn hierar-
chical object representations in a similar way. In particular, we leverage the
insight that the parts belonging to real-world objects tend to be spatially close,
to apply a sequence of convolutions followed by down-sampling operations to
extract object-level representations from part-level representations (left side of
Figure 3.2). While this leaves the network with ample freedom to develop its

37 3.1 Method

own internal notion of an object, we find that representational slots learn to
describe physical objects (Fig. 3.4a).

The choice of kernel-size and degree of down-sampling allow us to adjust
how representations at one level of abstraction are combined at the next level.
Similarly, the parameters of the CNN layers that produce the initial set of feature
maps determine the size of the input region captured by these ‘spatial slots’ [Gr-
eff et al., 2020] at the lowest level of abstraction. Note the distinction between
parts, objects and slots. Parts refer to objects at the lowest level of the visual
hierarchy, while the more general notion of an object applies to nodes at all
levels. Slots are variable placeholders (of a function) at a representational level,
which at each point in time are expected to contain information about a particu-
lar object/part. Therefore, an architectural hierarchy of slots reflects a hierarchy
of objects. In general, we construct a 3-level part-based hierarchy, which is then
fed into the relational module.

Neural Relational Inference To infer relations between object representations,
we will make use of NRI [Kipf et al., 2018], which learns explicit relations. This
is advantageous, since it allows one to incorporate prior beliefs about the over-
all connectivity of the interaction graph (e.g., a degree of sparsity) and asso-
ciate a representation with each relation to distinguish between multiple differ-
ent relation types. By default, NRI takes as input a set of object trajectories
(states) and infers their pairwise relations (edges) using a Graph Neural Network
(GNN) [Scarselli et al., 2009; Gilmer et al., 2017; Battaglia et al., 2018]. It as-
sumes a static interaction graph, and performs relational inference by processing
the entire input sequence at once, i.e., the whole sequence (length 50) of a par-
ticular object is concatenated, and only a single, static, “node embedding” is
created via an MLP. In contrast, we will consider a dynamic interaction graph,
since objects move across the image and may end up in different spatial slots
throughout the sequence. This is achieved by inferring edges at each time step
based on the ten most recent object states, concatenating the latent vectors of a
particular object and using an MLP to obtain a “node embedding”.

More formally, given a graph G = (V , E) with nodes (objects) o ∈ V and
edges (relations) ri,j = (oi, oj) ∈ E , NRI defines a single node-to-node message
passing operation in a GNN similar to [Gilmer et al., 2017]:

ei,j = fe([oi, oj, ri,j]), o′
j = fo([

∑
i∈Noj

ei,j, oj]) (3.1)

where ei,j ∈ Rde is an embedding (effect) of the relation ri,j ∈ Rdr between
objects oi ∈ Rdo and oj ∈ Rdo , o′

j ∈ Rdo is the updated object embedding, Nj

38 3.1 Method

the set of indices of nodes connected by an incoming edge to object oj ∈ Rdo and
[·, ·] indicates concatenation, and de, dr, do positive integers. Functions fo and fe
are node- and edge-specific neural networks (MLPs in practice). By repeatedly
applying equation 3.1, multiple rounds of message passing can be performed.

The NRI ‘encoder’ receives as input a sequence of object state trajectories
o = (o1, ..., oT), which in our case are inferred. It consists of a GNN fϕ that de-
fines a probability distribution over edges qϕ(rtij|ot−k:t) = softmax(fϕ(ot−k:t)ij),
where k is the window size, and relations are one-hot encoded. The GNN
performs the following message passing operations, where the initial node rep-
resentations oi are obtained by concatenating the corresponding object states
across the window:

o′
j = f 1

o (oj), e′i,j = f 1
e ([o′

i, o′
j]), o′′

j = f 2
o (
∑

i ̸=j e′i,j),
e′′i,j = f 2

e ([o′′
i , o′′

j]), fϕ(ot−k:t)ij = e′′i,j

where ϕ contains the parameters of the message-passing functions, which are
simple MLPs, and o′, e′ and o′′, e′′ are node- and edge-embeddings after first and
second message passing operations respectively. To backpropagate through the
sampling from qϕ(rij|o), NRI uses a continuous approximation of the discrete
distribution to obtain gradients via the reparameterization trick [Maddison et al.,
2017; Jang et al., 2017].

3.1.2 Physical Reasoning

Physical reasoning is performed by the dynamics predictor, which leverages the
inferred object representations and edges to predict object states at the next time
step. To distinguish between representations at different levels of abstractions,
HRI makes use of hierarchical message passing. We will also use recurrent units
in the non-Markovian setting.

Hierarchical message passing The default approach to physical reasoning
based on message-passing employed in NRI can only propagate effects between
directly connected nodes. This is costly, as it requires several iterations for in-
formation to propagate across the whole graph, especially when the number
of nodes increases (a consequence of modeling objects as hierarchies of parts).
Alternatively, we can leverage the hierarchical structure of the interaction graph
to propagate all effects across the entire graph in a single step, i.e. evaluating
each relation only once. To achieve this, we introduce a hierarchical message

39 3.1 Method

passing module which propagates effects between objects using a three-phase
sequential mechanism, loosely inspired by Mrowca et al..

Starting from the leaf nodes, the bottom-up phase computes the effect
on parent nodes op based on messages from its children, e1p = e0p +

f bu
MP ({e0c}c∈Cp , e0p, {rcp}c∈Cp) where Cp is the set of children indices of object op

and the initial effects e0 are simply the object embeddings. In this way, global
information is propagated from every node in the hierarchy to the root node.
Afterwards, the bottom-up effect e1i on node oi is combined with effects from
its siblings (within-sibling phase) e2i = e1i + fws

MP ({e1s}s∈Si
, e1i , {rsi}s∈Ci), where

Si is the set of sibling indices of object oi. Starting from the root node, the
top-down phase then propagates top-down effects that are incorporated by com-
puting e3c = e2c + f td

MP (e2p, e2c , rpc) for all children oc based on its parent op. Func-
tions f bu

MP , f
ws
MP , and f td

MP perform a single node-to-edge and edge-to-node mes-
sage passing operation as in equation 3.1 and have shared weights. Note that
this mechanism is independent of the choice of object and relational inference
module and can act on any hierarchical interaction graph.

Dynamics predictor Physical reasoning is performed by the dynamics predic-
tor, which predicts future object states pθ(ot+1|o1:t, r1:t) from the sequence of
object states and interactions. We implement this as in the NRI ‘decoder’ [Kipf
et al., 2018], i.e. using a GNN that passes messages between objects, but with
two notable differences. Firstly, we will pass messages only if an edge is in-
ferred between two nodes, as opposed to also considering a separate dynamics
predictor for the “non-edge” relation that causes information exchange between
unconnected nodes1. Secondly, we will leverage the hierarchical structure of
the inferred interaction graph to perform hierarchical message-passing.

If we assume Markovian dynamics, then we have pθ(ot+1|o1:t, r1:t) =

pθ(ot+1|ot, rt) and can use hierarchical message passing to predict object states
at the next step:

pθ(ot+1|ot, rt) = N (ot +∆ot, σ2I), (3.2)

where σ2 is a fixed variance, ∆ot = fO([ot, et]), et = fH(ot, rt) is the effect
computed by the hierarchical message passing module fH , and fO is an output
MLP. Notice howwe learn to predict the change in the state of an object, which is
generally expected to be easier. When encoding individual images, no velocity
information can be inferred to form the object state. In this non-Markovian case

1Although messages are passed only if an edge between two nodes exists, a “non-edge”
categorical variable is used to allow the model to infer that there is no edge between two nodes.

40 3.1 Method

we adapt equation 3.2 to include an LSTM [Hochreiter and Schmidhuber, 1997]
that models pθ(ot+1|o1:t, r1:t) directly:

ht+1, ct+1 = fLSTM (ot, et, ct), ot+1 = fO(ht+1),

p(ot+1
j |o1:t, r1:t) = N (ot+1, σ2I),

where c and h are LSTM’s cell and hidden state respectively, and et = fH(ht, rt).

3.1.3 Learning

Standard approaches to modelling physical interactions that do not assume ac-
cess to states uses a prediction objective in pixel space [van Steenkiste et al.,
2018; Veerapaneni et al., 2020]. This necessitates a mechanism to ‘render’ the
updated object representations. In this case, HRI can be viewed as a type of Vari-
ational Auto-Encoder [Kingma and Welling, 2013; Rezende et al., 2014], where
the inferred edges and objects are treated as latent variables, and the ELBO can
be maximized for the predicted frames:

L =Eqϕ(r|x)[log pθ(x|r, o)]−DKL[qϕo(o|x)||pθo(o)]
−DKL[qϕr(r|x, o)||pθr(r)].

(3.3)

The relational module qϕr(r|x, o) outputs a factorized distribution over rij, which
in our case is a categorical variable that can take on two values (one-hot en-
coded) that indicate the presence of an edge between oi and oj. The edge prior
pθr(r) =

∏
i ̸=j pθr(rij) is a factorized uniform distribution, which controls the

sparsity of the learned graph. The object inference module qϕo(o|x) outputs a
factorized distribution over oi, and the object prior pθo(o) is Gaussian, as in a
standard VAE. Given the inferred interaction graph, the dynamics predictor and
visual decoder define pθ(x|r, o).

Visual Decoder The visual decoder renders the updated object states and we
will consider two different implementations of this mapping. The first variant,
which we call SlotDec, ensures compositionality in pixel space by decoding
objects separately followed by a summation to produce the final image. In Fig-
ure 3.2 it is depicted as a set since individual object slots that are decoded
separately, and decoders share weights. This implements a stronger inductive
bias that encourages each slot to correspond to a particular object (since images
are composed of objects) and also makes it easy to inspect the representational
content of each slot. On the other hand, summation in pixel space is problem-
atic when objects in scenes are more cluttered and occlude one another. For

41 3.2 Related Work

Recurrent
0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

or
m

al
iz

ed
 N

LL
Model

HRI
NRI
NRI-lo
LSTM
LSTM-lo

(a)

Recurrent
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 N
LL

Model
HRI-GT
HRI
HRI-H
NRI-GT
NRI
FCMP

(b)

2 4 6 8 10
Time steps

0.000

0.002

0.004

0.006

0.008

0.010

Pr
ed

ic
tio

n
M

SE

Recurrent

Model
NRI
HRI
FCMP
HRI-H
NRI-GT
HRI-GT
LSTM

(c)

Figure 3.3: Performance on 4-3-state-springs. We compare HRI to (a) baselines
and (b) ablations in terms of the “normalized” negative log likelihood (higher is
better). (c) MSE for future prediction (prediction rollouts).

this reason we implement a second variant, which we call ParDec, where all
states are decoded together as in a standard convolutional decoder. As a result
of decoding all object slots together ParDec is less interpretable than SlotDec,
but computationally more efficient and potentially more scalable to real-world
datasets since it does not make strong assumptions on how information about
objects should be combined. This may also make it easier to handle background,
although this is not explored.

3.2 Related Work

More generic approaches to future frame prediction are typically based on
RNNs, which are either optimized for next-step prediction directly [Srivastava
et al., 2015; Lotter et al., 2017], e.g. using a variational approach [Babaeizadeh
et al., 2018; Denton and Fergus, 2018; Kumar et al., 2020], or (additionally) re-
quire adversarial training [Lee et al., 2019; Vondrick et al., 2016]. Several such
approaches were also proposed in the context of physical reasoning [Finn et al.,
2016; Lerer et al., 2016; Li et al., 2016]. However, unlike our approach, they
do not explicitly distinguish between objects and relations. This is known to af-
fect their ability to accurately model physical interactions and extrapolation [van
Steenkiste et al., 2018; Garnelo and Shanahan, 2019], despite their remarkable
capacity for modeling more complex visually scenes.

More closely related approaches to physical prediction explicitly distinguish
object representations and incorporate a corresponding relational inductive bias,
typically in the form of a graph network [Battaglia et al., 2018]. In this case,

42 3.2 Related Work

reasoning is based on message-passing between object states and relations are
either inferred heuristically [Chang et al., 2017; Mrowca et al., 2018; Lingel-
bach et al., 2020], implicitly by the message passing functions [Sukhbaatar
et al., 2015; Battaglia et al., 2016; Santoro et al., 2017; Watters et al., 2017;
Sanchez Gonzalez et al., 2018; Sanchez-Gonzalez et al., 2020] e.g. via atten-
tion [Hoshen, 2017; van Steenkiste et al., 2018], or explicitly as in NRI [Kipf
et al., 2018]. Typically, these approaches assume access to supervised state
descriptions, and only few works also infer object representations from raw
visual images [van Steenkiste et al., 2018; Veerapaneni et al., 2020; Watters
et al., 2019a]. RIMs [Goyal et al., 2019] impose a modular structure into an
RNN, whose sparse communication can be seen as a kind of relational infer-
ence. However, neither of these additionally incorporate a hierarchical induc-
tive bias to cope with more complex physical interactions (and corresponding
objects). Arguably, this is due to the difficulty of inferring corresponding part-
based object representations, and indeed prior approaches that do incorporate
a hierarchical inductive bias rely on supervised state descriptions [Mrowca et al.,
2018; Lingelbach et al., 2020].

Related approaches that specifically focus on the issue of learning object
representations from raw visual observations typically make use of mixture
models [Greff et al., 2017, 2019] or attention [Eslami et al., 2016; Kosiorek
et al., 2018; Stanić and Schmidhuber, 2019; Burgess et al., 2019; Crawford and
Pineau, 2019; Jiang* et al., 2020]. In our case, we adopt an approach based on
spatial slots [van Steenkiste et al., 2019; Greff et al., 2020] that puts less empha-
sis on the exact correspondence to objects. Unlike prior work [Santoro et al.,
2017; Zambaldi et al., 2019], we demonstrate how spatial slots can be extended
to a hierarchical setting.

Hierarchical structure learning has previously been explored in vision. In
this case, hierarchies are either learned from 3D volumetric primitives [Tulsiani
et al., 2017], or using ground truth pixel-wise flow fields to guide object or
object parts segmentation [Liu et al., 2019]. In concurrent work [Mittal et al.,
2020], RIMs were extended to consider a hierarchy of modules, although their
correspondence to perceptual objects (and parts) is unclear. A more relevant
approach was recently proposed by [Deng et al., 2019], which is able to infer
a hierarchy of objects and parts, directly from raw visual images. However, it
was not explored how this approach can be adapted to video, and how these
abstractions can be used for physics prediction.

43 3.3 Experiments

(a)

SlotDec ParDec
0

20

40

60

80

100

120

140

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
NRI-lo
FCMP
LSTM
LSTM-lo

(b)

0

5

10

15

20

25

30

35

40

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
FCMP
LSTM

(c)

Figure 3.4: (a) HRI introspection: first column contains ground-truth, prediction
and their difference. The other columns show the 16 object slots decoded sep-
arately. (b) Negative log likelihood for all models on the 4-3-visual-springs and
(c) Human3.6M.

3.3 Experiments

In this section we evaluate HRI on four different dynamics modelling tasks: state
trajectories of objects connected via finite-length springs in a hierarchical struc-
ture (state-springs); corresponding rendered videos (visual-springs); rendered
joints of human moving bodies (Human3.6M); and raw videos of moving hu-
mans (KTH). We compare HRI to NRI [Kipf et al., 2018], which performs rela-
tional inference but lacks a hierarchical inductive bias, and to an LSTM [Hochre-
iter and Schmidhuber, 1997] that concatenates representations from all objects
and predicts them jointly, but lacks a relational inference mechanism altogether.
Appendix A contains all experimental details. Reported results are mean and
standard deviations over 5 seeds.

3.3.1 State Springs Dataset

We consider synthetic physical systems containing simple objects connected
via finite-length springs that can be organized according to a hierarchical inter-
action graph (Figure 3.5, middle row). Here, an approach that attempts to model
the underlying system dynamics (which are highly complex) would clearly ben-
efit from a hierarchical inductive bias, which allows us to validate our design
choices. In all configurations we consider hierarchies with 3 levels (containing a
root node, intermediate nodes, and leaf nodes), whose connectivity is decided
randomly while ensuring that all nodes are connected. Corresponding physical
objects are initialized at random locations with the root node biased towards
the center and the intermediate and leaf nodes towards a particular quadrant to

44 3.3 Experiments

reduce clutter (see also Appendix A).
We experiment with hierarchies containing 4 intermediate nodes, each hav-

ing 3 or 4 leaf nodes, denoted as 4-3-state-springs and 3-3-state-springs, re-
spectively. Each model receives as input the 4-dimensional state trajectories:
x(t), y(t),∆x(t),∆y(t).

t = 2t = 0 t = 4 t = 6 t = 8
Figure 3.5: Rendered inputs for 4-3-state-springs (leaf objects only) (top); full in-
teraction graph, unobserved by model (middle); Predictions and inferred edges
by HRI (bottom).

Comparison to baselines We compare HRI to NRI and LSTM on 4-3-state-
springs (Figure 3.3a) and 3-3-state-springs (Figure 7a in Appendix B), in terms
of the negative log likelihood inversely proportional to a version of HRI that
operates on the ground-truth interaction graph (HRI-GT)2. In this case, values
closer to 1.0 are better, although we also provide raw negative log likelihoods
in Figure A.2 which offers the same conclusions. It can be observed that HRI
markedly outperforms NRI on this task, and that both significantly improve over
the LSTM (which was expected). These findings indicate that the hierarchical
inductive bias in HRI is indeed highly beneficial for this task.

2This allows us to factor out the complexity of the task and make it easier to compare results
between tasks.

45 3.3 Experiments

(a)

0

5

10

15

20

25

30

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

HRI
NRI
FCMP
LSTM

(b)

0.0 2.5 5.0 7.5
Time steps

0.000

0.001

0.002

0.003

0.004

M
ea

n
Sq

ua
re

d
Er

ro
r

Model
HRI
NRI
FCMP
LSTM

(c)

Figure 3.6: (a) Ground truth (top) and predicted 10 time steps rollout for LSTM
(middle) and HRI (bottom) row on KTH. (b) Negative log likelihood for all mod-
els on KTH. (c) Rollout predictions accuracy for all models on KTH.

We also compare to baselines that focus only on the leaf objects (NRI-lo
and LSTM-lo) and are therefore not encouraged to separate hierarchical sources
of influence (i.e. we impose less structure). It can be observed that this does
not result in better predictions and the gap between NRI-lo and NRI indicates
that explicitly considering multiple levels of abstraction, as in HRI, is indeed
desirable.

Ablation & Analysis We conduct an ablation of HRI, where we modify the
relational inference module. We consider FCMP, a variation of NRI that does
not perform relational inference but assumes a fixed fully connected graph, and
HRI-H, which is given knowledge about the ‘valid’ edges in the ground-truth
hierarchical graph to be inferred and performs relational inference only on those.

In Figure 3.3b and Figure 7b (Appendix B) it can be observed how the lack of
a relational inference module further harms performance. Indeed, in this case
it is more complex for FCMP to implement a similar solution, since it requires
“ignoring” edges between objects that do not influence each other. It can also
be observed how HRI outperforms HRI-H (but see Figure 7b where they per-
form the same), which is surprising since the latter essentially solves a simpler
task. We speculate that training interactions could be responsible for this gap.
Switching to static graph inference yielded a significant drop in performance for
NRI (∼ 74% worse), while HRI remained mostly unaffected (∼ 5% worse).

We also consider the benefit of hierarchical message-passing in isolation by
comparing HRI to NRI-GT, which receives the ground-truth interaction graph.
In Figure 3.3b and Figure 7b (Appendix B) it can be seen how the lack of hier-
archical message-passing explains part of the previously observed gap between
HRI and NRI, but not all of it. It suggests that by explicitly considering multi-
ple levels of abstraction (as in HRI), conducting relational inference generally

46 3.3 Experiments

becomes easier on these tasks. Finally, we consider the effect of using a feedfor-
ward dynamics predictor (Figures 8 and 9 in Appendix B). It can be seen that in
the feedforward case, position and velocity are not enough to derive interactions
between objects. For this reason we exclusively focus on the recurrent predictor
from now on.

Long-term Prediction and Graph Inference We investigate if HRI is able to
perform long-term physical predictions by increasing the number of rollout steps
at test-time. In Figure 3.3c we report the MSE between the predicted and ground
truth trajectories and compare to previous baselines and variations. It can be
observed that HRI outperforms all other models, sometimes even HRI-GT, and
this gap increases as we predict deeper into the future. To qualitatively evaluate
the plausibility of HRI’s rollout predictions, we generated videos by rendering
them. As can be seen in Figure 3.5 (bottom row) both the predicted trajectories
and the inferred graph connectivity closely matches the ground-truth. Similar
results are obtained for 3-3-state-springs in Appendix B.

3.3.2 Visual Datasets

To generate visual data for springs we rendered 4-3-state-springs and 3-3-state-
springs with all balls having the same radius and one of the 7 default colors,
assigned at random3. Additionally, we consider Human3.6M [Ionescu et al.,
2013] (using rendered joints) and KTH [Schuldt et al., 2004] (using raw videos).
We train each model in two stages, which acts as a curriculum: first we train the
visual encoder and decoder on a reconstruction task, afterwards we optimize
the dynamics parameters on the prediction task.

Visual Springs To create the visual springs dataset, we render only the leaf
nodes. Hence the visible balls themselves are the “parts” that must be grouped
in line with more abstract “objects” corresponding to the intermediate and root
nodes of the interaction graph (e.g. the gold and silver balls in the bottom row
of Fig. 3.5) which are not observed.

In Figure 3.4b we compare HRI to several baselines and previously explored
variations (the results for 3-3-visual-springs are available in Figure 10 in Ap-
pendix B). We are able to observe similar results, in that HRI is the best per-
forming model, although the added complexity of inferring object states results

3Similar results were obtained when using homogeneous colors (Figures 11 and 12) and
when varying shape (Figures 17 to 21).

47 3.3 Experiments

in smaller differences. This is better understood by comparing the difference
between HRI and NRI4 to the difference between HRI and NRI-lo. It can be
seen that NRI-lo performs slightly worse than HRI (although it is less stable) and
is much better than NRI, which suggests that inferring the intermediate and root
node objects is one of the main challenges in this setting. Notice, however, that
HRI continues to markedly improve over the LSTM and visual NRI in this setting.
We note that comparing to NRI-GT or HRI-GT is not possible, since the mapping
from learned object representations to those in the graph is unknown.

Comparing SlotDec and ParDec in Figure 3.4b, we observe that better results
are obtained using the latter. We suspect that this is due to the visual occlusions
that occur, which makes summation in pixel space more difficult. Nonetheless,
in most cases we observe a clear correspondence between spatial slots and infor-
mation about individual objects (see Figure 3.4a). Finally, Figure 13 (Appendix
B) demonstrates how future predictions by HRI match the ground-truth quite
well. Similarly, we observe that the inferred interaction graph by HRI resembles
the ground-truth much more closely compared to NRI (Figure 15 in Appendix
B).

When evaluating HRI trained on 4-3-visual-springs on 3-3-visual-springs (i.e.
when extrapolating) the relative ordering is preserved (Figure 22 in Appendix
B).

Real-world Data We consider Human3.6M, which consists of 3.6 million 3D
human poses composed of 32 joints and corresponding images taken from pro-
fessional actors in various scenarios. Here we use the provided 2D pose projec-
tions to render 12 joints in total (3 per limb) as input to the model. This task is
significantly more complex, since the underlying system dynamics are expected
to vary over time (i.e. they are non-stationary). Fig. 3.4c demonstrates the per-
formance of HRI and several baselines on this task. Note that HRI is the best
performing model, although the gap to NRI and LSTM is smaller. This can be
explained by the fact that many motions, such as when sitting, eating, and wait-
ing involve relatively little motion or only motion in a single joint (and thereby
lack hierarchical interactions). Example future predictions by HRI can be seen
in Figure 14.

Finally, we apply HRI directly on the raw videos of KTH, which consists
of people performing one of six actions (walking, jogging, running, etc.). Fig-
ure 3.6a shows a comparison between the LSTM baseline and HRI model. In the

4Note that NRI requires object states. Here, we consider an adaptation using the encoder
and decoder proposed for HRI.

48 3.4 Conclusion and Discussion

video generated by the LSTM, the shape of the human is not preserved, while
HRI is able to clearly depict human limbs. We prescribe this to the ability of
HRI to reason about the objects in the scene in terms of its parts and their in-
teractions, which in turn simplifies the physics prediction. This observation is
also reflected in the quantitative analysis in Figs. 3.6b and 3.6c, where large
differences can be observed, especially when predicting deeper into the future.

3.4 Conclusion and Discussion

Hierarchical Relational Inference (HRI) is a novel approach to common-sense
physical reasoning capable of learning to discover objects, parts, and their rela-
tions, directly from raw visual images in an unsupervised fashion. It builds on
the idea that dynamics of complex objects are best modeled as hierarchies of
parts that separate different sources of influence. We compare HRI’s predictions
to those of a strong baseline on synthetic and real-world physics prediction tasks,
where it consistently outperforms. Several ablation studies validate our design
choices.

A potential limitation of HRI is that it groups parts into objects based on
spatial proximity, which may be suboptimal in the case of severe occlusions.
Further, it would be interesting to provide for inter-object interactions, and un-
known hierarchy depths. Both might be handled by increasing the hierarchy
depth and relying on the relational inference module to ignore non-existent
edges.

Since we published our paper on which this chapter is based, it remains one
of the few that tackles the question of learning hierarchical object-centric repre-
sentations. Follow-up work, such as the GLOM model [Hinton, 2023], discusses
ideas only at a conceptual level, without a concrete implementation or a work-
ing model. The lack of research on hierarchical object-centric representations
is partially due to the difficulty of the problem.

Moreover, since real-world scenes can be decomposed into a large number
(sometimes even intractably many) of different hierarchical levels, it might not
even be necessary to go beyond the two hierarchical levels that we introduced.
As long as there is a hierarchical relation describing “is part of”, the level at
which we represent the scene could be dynamic, i.e., based on a task, word,
goal, or an action. The rest of the scene can be left unmodelled, e.g. if we are
interested in counting the number of screws in a car wheel, we can safely ignore
the rest of the car and represent only the wheel and its parts.

Chapter 4

Learning to Generalize with
Object-centric Agents

In Chapter 3 we introduced a method (HRI) that is capable of inferring nodes
and edges of a hierarchical graph directly from raw visual data. HRI models
objects as hierarchies of parts that may locally behave separately but also act
more globally as a single whole. HRI explicitly distinguishes multiple levels of
abstraction and improves over a strong baseline in modeling synthetic and real-
world videos. However, (hierarchical) decomposition into objects is generally
task dependent, and sometimes it is infeasible and undesirable to decompose a
scene into all hierarchy levels. For these reasons, it might be more beneficial to
modulate objects with task information, such as words (in VQA) or actions/goals
(in RL). In this chapter we introduce object-centric agents in an RL setup, and
study their properties, especially in terms of out-of-distribution generalization.

Reinforcement learning agents must generalize beyond their training experi-
ence. Prior work has focused mostly on identical training and evaluation envi-
ronments. In this work, starting from the recently introduced Crafter benchmark,
a 2D openworld survival game, we introduce a new set of environments suitable
for evaluating some agent’s ability to generalize on previously unseen (numbers
of) objects and to adapt quickly (meta-learning). We introduce CrafterOOD, a
set of 15 new environments that evaluate OOD generalization. On CrafterOOD,
we show that the current agents fail to generalize, whereas our novel object-
centric agents achieve state-of-the-art OOD generalization while also being in-
terpretable.

This chapter is based on “Learning to Generalize with Object-centric Agents in the Open
World Survival Game Crafter” [Stanić et al., 2023] paper, which was published as a journal
article in IEEE Transactions on Games.

49

50

Common benchmarks and solid baselines are essential for developing new
models and correctly measuring progress in machine learning. Datasets for su-
pervised learning (such as ImageNet [Deng et al., 2009]) and game-based envi-
ronments for reinforcement learning (RL) (such as Atari [Bellemare et al., 2013],
ProcGen [Cobbe et al., 2020] and MineRL [Guss et al., 2019, 2021]) have played
a crucial role in developing new methods and improving the state of the art. To
judge the improvements offered by novel methods, it is critical to compare them
to solid yet simple baselines, especially in deep RL, where reproducing existing
work is often hard due to a plethora of difficulties [Henderson et al., 2018].

Early benchmarks were important to show that certain deep RL methods
can learn control from high-dimensional images, e.g., neuroevolution via com-
pressed network encodings [Koutník et al., 2013] on the TORCS benchmark
[Wymann et al., 2000], or the DQN agent [Mnih et al., 2015] on the Atari
benchmark [Bellemare et al., 2013]. These benchmarks, however, focused on
narrow task sets, and conducted training and evaluation on in-distribution en-
vironments, where the agents could (simply) memorize sequences of actions
leading to high reward without understanding the underlying mechanics of the
world. Intelligent agents should discover salient objects (entities) of the world,
identify relevant properties of objects (e.g., shape is important, color is not)
and ignore irrelevant parts of the environment. For better evaluation, the fo-
cus has recently shifted to studying agent performance on carefully designed
benchmarks [Osband et al., 2020], with emphasis on agents that generalize to
environments beyond what they are trained on (e.g., ProcGen or Crafter [Hafner,
2021]).

Here we focus on Crafter [Hafner, 2021], a recently introduced open world
survival game that allows tractable investigation of new agents and their gener-
alization, exploration, and long-term reasoning capabilities. Compared to other
benchmarks, Crafter has a set of advantages that make it suitable for RL research:
fast iteration speed (agents can be trained within a few hours on a standard GPU
and a single CPU core), model evaluation by inspecting semantically meaningful
achievements unlocked by the agents, and controllable environmental objects
that facilitate systematic studies. Our experiments on the original Crafter envi-
ronment offer important, previously unpublished insights into baselines and en-
vironmental workings. In addition, we introduce two sets of new environments,
CrafterOODapp and CrafterOODnum, that test out-of-distribution (OOD) gener-
alization to unseen types and numbers of objects, respectively. This also sets the
stage for developing fast-adaptation algorithms in the context of meta-learning.

Ourmain contributions are: (1)We show that careful hyper-parameter tuning
improves the PPO baseline agent by a large margin. We achieve new state-of-

51 4.1 Environments

Figure 4.1: Crafter gameplay showing an agent collecting resources (wood) and
crafting a weapon (wooden pickaxe), and its attention. Top row: input images.
Bottom row: visualized attention. Episode steps are plotted horizontally.

the-art performance on the original Crafter environment. (2) We show that feed-
forward agents can unlock almost all achievements by relying on the inventory
display (bottom part of the images in Figs. 4.1 and 4.2a) – a type of “scratchpad”).
(3) We show that recurrent agents improve over feedforward ones, even when
the inventory information is removed. (4) We show that tuned agents can unlock
almost all achievements. (5) We introduce CrafterOOD, a set of 15 new envi-
ronments, to evaluate OOD generalization of agents. (6) We introduce novel
object-centric agents that achieve state-of-the-art OOD generalization while be-
ing interpretable.

4.1 Environments

Here we briefly summarize essential properties of the Crafter environment and
the newly introduced CrafterOODapp and CrafterOODnum environments. For
additional details on Crafter we refer to [Hafner, 2021].

Crafter. Crafter is an open world survival game for RL research whose game
dynamics are inspired by the popular game Minecraft. The benchmark is de-
signed to facilitate existing research challenges: procedural generation to test
generalization, exploration due to a deep technology tree of achievements con-

52 4.1 Environments

(a)

Q, K, V

CLS

Self-Attention

CLS

Action Value

(b)

K, V

Cross-AttentionQ

Pool

Action Value

Slots

Objects/Patches

(c)

Figure 4.2: (a) Crafter gameplay. (b) Object-centric Self-Attention (OC-SA)
model with a CLS token and queries (Q), keys (K) and values (V). (c) Slot-based
Object-centric Cross-Attention (OC-CA) model. Pool operation averages the
slots to produce the final input vector fed into the actor and critic networks.

ditioned on one another, high-dimensional image observations requiring rep-
resentation learning, memory through partial observability, and finally, sparse
rewards that require long-term reasoning and credit assignment. It has the right
level of complexity that is challenging enough for the current agents to unlock
all achievements, yet not overly complex such that it facilitates interpretability
of the agent’s behavior and evaluation by unlocking semantically meaningful
achievements. In Crafter, a unique terrain is generated for every episode with
grasslands, lakes, and mountains that contain forests, caves, ores, and lava. The
world consists of 64× 64 grid cells, but the agent only observes 7× 9 grid cells
making Crafter a partially observed environment. At each step the agent receives
a 64×64×3 input image as in Fig. 4.2a, and returns an action from a categorical
space of 17 actions. Of those actions, four are for moving in the environment,
one is for sleeping, and the rest are for crafting or interacting with specific tools
or resources. For an example of gameplay, see Figure 4.2a, where you can see
the player (agent) in the middle, a skeleton on its top right, a zombie bottom-left
from the agent, a cow, water, trees, stones, iron and lava.

In the bottom-left part of Fig. 4.2a the agent’s health status is shown. The
heart represents the number of lives it has left, and next to it, the levels of food,
water, and energy (that it recharges by sleeping). Next to this is the inventory
display that shows the resources (here wood, stone, coal, and iron) and tools and
weapons (here wooden, stone, and iron pickaxes and swords) it has collected or
crafted so far. The agent must collect resources such as wood, stone, coal, and
iron to craft tools. The agent needs to eat food, drink water, sleep and defend
against enemies to prevent its health from reaching zero. All these agents and
resources are represented as objects in the environment. Eating food, collecting

53 4.1 Environments

resources, defeating enemies, or crafting new tools are all “achievements”. The
first time the agent unlocks an achievement in an episode it receives a reward
of 1. On the other hand, for every lost health point the reward is −0.1, and
for every regained health point +0.1. When the health reaches zero or when
stepping into lava the agent dies, and the episode is over. Every time the agent
unlocks an achievement previously unlocked in the episode, it does not receive
any further reward. This should encourage the agent to explore and collect as
many achievements as possible instead of exploiting the ones it already knows.
Collecting the diamond is the final and the most difficult achievement. To col-
lect a diamond, the agent must build several tools that require even more basic
tools and resources to be collected. This results in a very deep technology tree
(see Figure 4 in the Crafter paper [Hafner, 2021]).

In total, there are 22 achievements and the main evaluation metric is the so-
called crafter score S. It is computed by averaging the unlocked achievements
in the log space (to account for differences in their difficulties):

S = exp(1
N

N∑
i=1

ln(1 + si)), (4.1)

where si ∈ [0, 100] is percentage of episodes in which the achievement i was
unlocked and N is the number of achievements (here N = 22). This score is
invariant to the number of times an achievement was unlocked in an episode
(once it is achieved). Due to averaging in the log space, the score will increase
more for unlocking difficult achievements in a few episodes (e.g. a diamond)
than for unlocking easy ones more frequently (e.g. collecting wood). The final
evaluation metrics is the geometric mean of S over all episodes.

CrafterOODapp. Building on top of Crafter, we introduce CrafterOODapp,
where we develop another axis of variation: object appearance based on color.
We introduce new variants of objects the agent most frequently interacts with:
trees, cows, zombies, stones, coal, and skeletons. For a detailed overview of
the newly introduced objects, see Figure B.2. This evaluates generalization to
unseen or infrequently seen objects. The agent is trained on an environment
with one distribution of such objects’ appearances and then evaluated on an
environment with a different distribution, possibly one with objects never seen
during training. In this way, CrafterOODapp sets the stage for the development
of agents based on fast-adaptation or meta-learning.

In the default Crafter environment, the agent always sees only the first variant
of an object. On the other hand, in CrafterOODapp, the agent encounters one
of the four object variants with varying frequencies of occurrence. For example,

54 4.2 Methods

in the easiest scenario, the agent sees all four object variants (O1, O2, O3, O4) with
equal (25%) probability in the training environment, and then in the evaluation
environment it encounters only the “last” three objects O2, O3, O4 with equal
(but increased, 33.3%) probability. We then generate progressively more chal-
lenging scenarios where the training environment contains more instances of
object variant O1. Lastly, in the most extreme case of zero-shot generalization,
we train agents on environments containing only the first object O1 and then
evaluate them on environments containing only the last three objectsO2, O3, O4.

CrafterOODnum. Also, building atop Crafter, we introduce CrafterOOD-
num, where the agent encounters different numbers of objects during the train-
ing and evaluation phases. As in CrafterOODapp, we vary the objects the agent
most frequently interacts with: trees, coal, cows, zombies, and skeletons. To get
a clear picture of these environments, in Table 4.6 we show the numbers of
each of these objects in the respective environment variants. Starting from de-
fault object distributions in Crafter, we increase or decrease object numbers by
powers of two. These variants are particularly challenging as the agent might
face never-before-seen situations such as fighting against more enemies or sur-
viving in environments with resources scarcer compared to what it was trained
on. Importantly, changing the number of objects does not change the maximum
score the agent can obtain, as it is still possible to unlock all the achievements,
but with different difficulties. However, this changes the reward function and
makes the credit assignment problem more difficult because reward is sparser
with fewer objects.

4.2 Methods

In this section, we describe the agents’ network architectures. We first introduce
CNN feedforward baselines, followed by LSTM-based recurrent agents, and fi-
nally introduce object-centric agents. To optimize agents we use the PPO [Schul-
man et al., 2017] implementation in the stable baselines [Raffin et al., 2021] (for
a discussion on off-policy algorithms see Appendix B.4).

4.2.1 Linear and Recurrent PPO

PPO learns to map images to actions via policy gradients. Two feedforward vari-
ants are investigated that differ by the CNN policy they use. We introduce a
recurrent version based on an LSTM [Hochreiter and Schmidhuber, 1997] to
account for partial observability. Note that the first application of policy gradi-

55 4.2 Methods

ents to LSTM dates back to 2007 [Wierstra et al., 2007]. For architecture details
see Appendix B.7.

PPO with NatureCNN (PPO-CNN). This baseline is architecturally identical
to the one used in [Hafner, 2021], with the CNN policy from the DQN paper
[Mnih et al., 2015].

PPO with size-preserving CNN (PPO-SPCNN). Size-preserving CNN
(SPCNN) differs from the PPO-CNN baseline by the CNN architecture. We in-
troduce it as a baseline for object-centric agents that use SPCNN for “feature mix-
ing,” inspired by SlotAttention’s visual encoder [Locatello et al., 2020]. SPCNN
does not have pooling layers, so the resulting output tensor is of the same height
and width as the input image. The policy input tensor is much larger (64x64x64
instead of 8x8x64 for CNN) making the policy also very large (134M vs. 1M
parameters).

Recurrent PPO Agents. Crafter is a partially observable environment. The
agent observes only a part of the world (see Figure 4.2a). To perform well, it
needs to remember the locations of resources, e.g. food, mining materials, and
where it placed objects for crafting new tools, e.g. table or furnace. Addition-
ally, some achievements require the agent to perform a long chain of reasoning.
For example, to collect a diamond, the agent needs to have an iron pickaxe, for
which it needs to have crafted a furnace and collected coal, for which in turn it
needs to have previously collected wood, placed a table, made a wooden pick-
axe, and collected stone (in that particular order). For the complete overview of
the technology tree, see Figure 4 in [Hafner, 2021]. For these reasons, we intro-
duce recurrent agents (LSTM-CNN and LSTM-SPCNN) where we use LSTMs as
the critic and the actor networks. These networks, in theory, entitle the agent to
have memories of the world map and its inventory and can help unlock achieve-
ments.

4.2.2 Object-centric Agents

Our experiments show that the baseline agents fail to generalize to OOD en-
vironments. This is in line with the previous findings that neural networks fall
short in generalization. One hypothesis for this is due to their inability to dy-
namically and flexibly bind information distributed throughout the network [Gr-
eff et al., 2020], also known as the binding problem [Von Der Malsburg, 1994;
Roskies, 1999]. To address this issue, there has been an increased interest in
designing object-centric neural networks that learn (discrete) object representa-
tions from raw visual input, which support efficient learning and generalization
to novel scenarios and behaviors. Object-centric methods have successfully

56 4.2 Methods

been used for OOD generalization in supervised and unsupervised learning
[Greff et al., 2017; van Steenkiste et al., 2018; Kosiorek et al., 2018; Stanić and
Schmidhuber, 2019; Greff et al., 2019; Locatello et al., 2020; Stanić et al., 2021;
Kipf et al., 2021] and in RL [Watters et al., 2019a; Veerapaneni et al., 2020; Kipf
et al., 2020; Carvalho et al., 2021]. Since Crafter is composed of objects, we
expect these methods to facilitate learning and show stronger generalization ca-
pabilities. In this vein, we designed two object-centric agents and investigated
them on CrafterOOD environments. They take as input either patches extracted
from the image through a size-preserving CNN (Figure 4.4) or learn their own
representation of an object by attending over the whole input tensor (Figure 4.7).
Below we provide an overview of our two object-centric agents. For more de-
tails we refer to Appendix B.3.

Object-centric Self-Attention agents (OC-SA) (Figure 4.2b and Table B.3)
learn a policy via a dot-product self-attention between the input patches and a
learned “CLS” token (a vector initialized to unit Gaussian parameters and op-
timized via backprop). This is similar to using the CLS token in BERT [Devlin
et al., 2018]. Let (x1, ..., xk, CLS) ∈ R(k+1)×din be the input sequence, where
k is the number of input patches and din is their dimensionality. Dot-product
self-attention is defined as:

Attention(Q,K, V) = softmax
(QKT

√
d

)
V, (4.2)

where Q ∈ R(k+1)×d, K ∈ R(k+1)×d, V ∈ R(k+1)×d, are the query, key and value
matrices, resulting from a linear mapping of the input sequence onto a space of
dimension d. Absolute sinusoidal positional embeddings [Vaswani et al., 2017]
are added to the input, enabling the learning of relative patch positions, e.g. if
an enemy is nearby.

Object-centric Cross-Attention agents (OC-CA) (Figure 4.2c and Table B.4)
learn a set of vectors, which we refer to as ’slots’, by attending either to a patch
grid or the whole input (this can be seen as an extreme case of the patch grid with
patch size of one pixel). This idea was introduced in SetTransformer [Lee et al.,
2019] and successfully used for object detection [Carion et al., 2020], unsuper-
vised learning of objects [Locatello et al., 2020], learning permutation-invariant
agents [Tang et al., 2020; Tang and Ha, 2021] and general perception modules
[Jaegle et al., 2021b,a; Alayrac et al., 2022]. OC-CA computes attention be-
tween queries, keys and values as in self-attention Eq. (4.2), but with the queries
coming from the n learned slots: Q ∈ Rn×d, K ∈ Rk×d, V ∈ Rk×d, where k is
the number of input patches or image pixels for learned objects. The extreme
patch size allows for higher expressiveness as each slot can attend to variable-

57 4.3 Experiments on the Crafter environment

size or more distant image regions. After cross-attention, slots are pooled by a
mean operation and fed to the policy.

Method Crafter Score

PPO* 4.6 ± 0.3
DreamerV2* 10.0 ± 0.2

PPO-CNN 10.3 ± 0.6
PPO-SPCNN 11.6 ± 0.6
LSTM-CNN 10.4 ± 0.2
LSTM-SPCNN 12.1 ± 0.8
OC-SA 11.1 ± 0.7
OC-CA 10.0 ± 0.4

PPO-CNN (no inventory) 6.9 ± 0.4
LSTM-CNN (no inventory) 7.7 ± 0.5

Table 4.1: Scores on Crafter for agents trained on 1M environmental steps. Re-
ported are mean scores and standard deviations of 10 random seeds. *score
from [Hafner, 2021].

4.3 Experiments on the Crafter environment

Here we present our findings on the original Crafter environment. We first in-
vestigate feedforward PPO baselines both with and without inventory display.
Recurrent agents are then investigated, and we show that they outperform feed-
forward ones. Finally, we evaluate asymptotic performance and show that the
tuned agents can learn to unlock all but the last achievement.

4.3.1 Improved baselines and hyper-parameter analysis.

By tuning a few hyper-parameters, we find that the simple PPO-CNN baseline
outperforms the model-based DreamerV2 [Hafner et al., 2020] (Table 4.1). Sur-
prisingly, even though the PPO-SPCNN model has 134M parameters, PPO is not
only able to train it, but often outperforms other methods (Tables 4.1 and 4.4).
This holds for both feedforward (PPO-SPCNN) and the recurrent (LSTM-SPCNN)
agents. PPO hyper-parameters we searched over are shown in Table 4.2. For
most hyper-parameters, in the experiments we used the default values (shown

58 4.3 Experiments on the Crafter environment

Hyper-parameter Sweep Values

Learning rate [0.001, 0.0005, 0.0003, 0.0001, 0.00005]
Batch size [64, 128, 256]
Number of rollouts [1024, 2048, 4096, 8196, 16384]
Number of epochs [3, 4, 6, 7, 10]
Discount factor [0.8, 0.9, 0.95, 0.97, 0.99]
GAE λ [0.5, 0.65, 0.75, 0.85, 0.95]
Clip Range [0.1, 0.2, 0.3]
Max Gradient Norm [0.1, 0.3, 0.5, 1.0]

Table 4.2: PPO hyper-parameters we searched over. Final used values are
bolded, unless default values are used (shown in italic).

Hyper-parameter Sweep Values

Batch size 16, 32, 64

Discount factor [0.9, 0.95, 0.99, 0.999]

Actor entropy scale [0.003, 0.001, 0.0003, 0.0001, 0.00003]

KL loss scale [0.1, 0.3, 1, 3]

Reward loss scale [0.5, 1, 2]

Discount loss scale [0.5, 1, 2]

KL balance [0.5, 0.8, 1, 2]

Discount λ [0.8, 0.9, 0.95]

Table 4.3: DreamerV2 hyper-parameters we searched over.

in italic) that were tuned for Atari in previous work; the ones we changed are
bolded. For a detailed hyper-parameter analysis we refer to Appendix B.2.

The best performing agent in the Crafter Benchmark paper [Hafner, 2021]
was the DreamerV2 agent [Hafner et al., 2020]. Therefore, we also tried tuning
its hyper-parameters: the actor entropy scale, the discount factor, the transition,
and the entropy loss scales (recommended in Table B.1 of the DreamerV2 paper
[Hafner et al., 2020]), as well as the batch size, KL loss scale, reward loss scale
and the discount λ. However, our hyper-parameter search did not improve on
results in [Hafner, 2021] (see Table 4.3).

59 4.3 Experiments on the Crafter environment

4.3.2 Agents use inventory display as a “scratchpad.”

Although purely feedforward, PPO-SPCNN can unlock almost all achievements
(19/22 for 1M steps and 21/22 achievements when trained for 25M steps, Sec-
tion 4.3.4). This requires the agent to remember unlocked achievements (e.g., I
have an iron pick-axe now, need to mine a diamond next). However, the fact
that the memory-less feedforward models unlocked most achievements leads us
to hypothesize that it uses the inventory display as a “scratchpad.” We evalu-
ate this by removing the inventory display, thus making the environment much
less observable. Here the agent really needs memory to know when to drink or
whether it has already crafted an item or not. The results in Table 4.1 support
our hypothesis, e.g., compare PPO-CNN with and without the inventory display
(‘PPO-CNN (no inventory)‘).

4.3.3 Recurrent improve over feedforward agents

The agent’s reliance on the inventory display as a “scratchpad” led us to investi-
gate whether recurrent agents could improve over feedforward ones by memo-
rizing actions, maps, unlocked achievements and crafted tools in its inventory.
With the observable inventory, LSTM-CNN does not improve upon the feedfor-
ward variant PPO-CNN (10.3 vs. 10.4 in Table 4.1). However, when the inven-
tory is not observable, LSTM-CNN outperforms PPO-CNN (6.9 vs. 7.7). This
might indicate that the recurrent agents learn to store achievements in memory,
although not perfectly, as we observe a drop from the case with the observable
inventory. On the other hand, LSTM-SPCNN outperforms its feedforward vari-
ant PPO-SPCNN in both in-distribution and OOD settings (Table 4.4). Here the
inventory is observed, so the largest benefit must arise from the agent’s ability
to memorize the partially observed map layout.

4.3.4 Asymptotic Performance

As the Crafter benchmark is designed to accelerate RL research and facilitate
short research cycles, the default evaluation protocol is to train agents up to 1M
steps. To better understand the asymptotic performance, we train PPO-CNN
and PPO-SPCNN agents for 25M steps. The resulting mean Crafter scores over
ten seeds are shown in Table 4.5. Other agents do not improve significantly
over these two in the asymptotic regime. For readability, we omit standard
deviations (they are all below 0.6, decreasing to 0.2 at 25M steps due to the
geometric mean averaging in the score). Firstly, PPO-SPCNN consistently out-

60 4.3 Experiments on the Crafter environment

Train/Eval Dist PPO-CNN PPO-SPCNN LSTM-CNN LSTM-SPCNN OC-SA OC-CA

Training: O1 : 100% 10.4 ± 0.6 11.4 ± 0.5 10.5 ± 0.5 12.3 ± 0.4 11.0 ± 0.5 10.1 ± 0.6
Evaluation: O1 : 100% 10.3 ± 0.6 11.6 ± 0.6 10.4 ± 0.2 12.1 ± 0.8 11.1 ± 0.7 10.0 ± 0.4

O1−4 : 25% 9.2 ± 0.5 10.7 ± 0.6 10.7 ± 0.6 11.5 ± 0.4 9.7 ± 1.1 9.9 ± 0.6
O1 : 0%, O2−4 : 33.3% 9.2 ± 0.7 11.0 ± 1.1 11.0 ± 1.0 11.6 ± 0.6 9.7 ± 1.2 9.2 ± 0.7

O1 : 52%, O2−4 : 16% 9.9 ± 0.5 11.1 ± 0.7 11.5 ± 1.4 11.1 ± 0.5 9.6 ± 0.8 9.4 ± 0.9
O1 : 0%, O2−4 : 33.3% 10.0 ± 0.7 11.2 ± 1.1 11.4 ± 1.6 11.0 ± 0.5 10.6 ± 0.9 9.9 ± 0.9

O1 : 76%, O2−4 : 8% 9.9 ± 0.4 11.5 ± 0.6 10.7 ± 1.0 11.6 ± 0.6 9.8 ± 0.8 11.3 ± 0.5
O1 : 0%, O2−4 : 33.3% 9.2 ± 0.6 10.5 ± 0.8 10.4 ± 1.0 10.7 ± 0.7 9.2 ± 0.8 10.5 ± 0.7

O1 : 88%, O2−4 : 4% 10.1 ± 0.6 12.2 ± 0.8 11.5 ± 1.4 11.3 ± 0.4 10.5 ± 1 11.2 ± 0.9
O1 : 0%, O2−4 : 33.3% 9.1 ± 0.7 10.2 ± 0.7 10.1 ± 1.3 9.8 ± 0.8 9.4 ± 1.3 9.4 ± 1.0

O1 : 94%, O2−4 : 2% 10.9 ± 0.7 12.0 ± 0.8 11.4 ± 1.2 11.7 ± 0.6 10.5 ± 0.6 10.8 ± 1.1
O1 : 0%, O2−4 : 33.3% 8.6 ± 0.7 9.2 ± 1.1 9.1 ± 1.4 9.8 ± 0.8 9.9 ± 0.8 8.8 ± 0.9

O1 : 97%, O2−4 : 1% 10.5 ± 0.6 11.8 ± 0.7 11.9 ± 1.4 12.0 ± 0.3 10.3 ± 1.1 10.8 ± 0.6
O1 : 0%, O2−4 : 33.3% 7.3 ± 0.5 7.7 ± 1.0 8.2 ± 1.0 8.6 ± 1.0 9.3 ± 0.8 8.8 ± 0.8

O1 : 100%, O2−4 : 0% 10.5 ± 0.6 11.8 ± 0.6 10.7 ± 0.2 11.9 ± 0.8 11.1 ± 1.3 10.7 ± 0.6
O1 : 0%, O2−4 : 33.3% 7.3 ± 0.5 7.7 ± 0.9 5.8 ± 0.2 6.8 ± 1.0 8.0 ± 1.2 7.6 ± 0.5

Table 4.4: Scores on CrafterOODapp (mean and standard deviations over 10
random seeds) for agents trained for 1M environmental steps. Each setting has
two rows, denoting training (e.g. O1−4 : 25%) and evaluation (O1 : 0%, O2−4 :

33.3%) scores.

performs the PPO-CNN baseline. Moreover, the PPO-SPCNN agent learns to
unlock all but one achievement (the diamond) at 5M steps (though this is not a
regular event). We suspect that the difficulty in mining the diamond is its rarity,
combined with the depth and the complexity of the technology tree of skills
that the agent needs to master, and tools to acquire to even have a chance at
mining the diamond. Furthermore, there are only very few diamonds on the
map, so finding it through random exploration is a highly unlikely event per se.
Moreover, unlike humans the agents have no prior notion that a diamond is
valuable, and only observe it as a different colored patch This leads us to think
better better exploration strategies are needed. This challenge seems ideal for
investigating novel curiosity-based agents [Schmidhuber, 1990; Schmidhuber,
1991a; Schmidhuber, 2013] or reward shaping [Justesen and Risi, 2018]. In
Table 4.5 we also compare to the concurrent work [Yi et al., 2022] and two
previous works (RRL [Zambaldi et al., 2019] and SMORL [Zadaianchuk et al.,
2020]), results taken from [Yi et al., 2022]. We observe from Table 4.5 that other
models achieve significantly lower scores compared to ours.

61 4.4 OOD Generalization Experiments

Method 1M 2M 5M 10M 20M 25M

PPO-CNN (Train) 10.3 15.7 18.5 27.4 29.0 29.4
PPO-CNN (Eval) 10.3 15.9 18.3 27.1 29.1 29.6

PPO-SPCNN (Train) 11.2 16.7 18.9 27.9 30.6 30.8
PPO-SPCNN (Eval) 11.6 16.5 19.4 27.8 30.5 30.9

OCARL [Yi et al., 2022] - - - - - 12.3
RRL [Zambaldi et al., 2019] - - - - - 4.22
SMORL [Zadaianchuk et al., 2020] - - - - - 3.94

Table 4.5: Asymptotic performance of PPO-CNN and PPO-SPCNN on the
Crafter environment up to 25M environmental interactions and comparison to
the related work.

4.4 OOD Generalization Experiments

In this section, we evaluate agents on new CrafterOODapp and CrafterOOD-
num environments, showing limited generalization of baseline agents and im-
proved generalization of object-centric ones.

4.4.1 CrafterOODapp - out-of-distribution object appearance.

In the CrafterOODapp environment, we generate a collection of increasingly
complex adaptation scenarios. Environments contain up to four object variants
for trees, cows, iron, stones, zombies, and skeletons, the objects the agent inter-
acts with most frequently (Fig. B.2 in Appendix B.1). The adaptation scenarios
differ in object distributions in training and evaluation environments (Table 4.7).
For example, the in-distribution training and evaluation corresponds to observ-
ing only the first object variant O1 (first two rows in Table 4.4).

Starting from training with uniformly distributed objects (O1−4 = 25%) we
make generalization progressively more difficult by skewing the training dis-
tribution towards the first object. In this way, we create environments that
contain the first object (O1) in 52% and all the others in 16% of the time
(O1 : 52%, O2−4 : 16% case in Table 4.4), then environments that contain the first
object in 76%, then 88% percent of the time, etc. The evaluation environment
always contains only the last three objects (we refer to them as the “evaluation”
objects) uniformly distributed (each observed in 33.3% of the time). Up to the
point of observing the evaluation objects in 16% of the time the agents general-
ize fairly well (Table 4.4, but see also Fig. B.3 in Appendix B.5). Decreasing the

62 4.4 OOD Generalization Experiments

Train/Eval Dist PPO-CNN PPO-SPCNN LSTM-CNN LSTM-SPCNN OC-SA OC-CA

Train: easy (x2) 12.4 ± 2 13.7 ± 1.2 14.2 ± 0.8 13.3 ± 1.0 15.0 ± 1.8 13.7 ± 1.8
Eval: default 10.4 ± 1.7 12.1 ± 1.0 11.5 ± 0.7 11.4 ± 0.9 13.0 ± 1.3 11.7 ± 1.7

easy (x4) 13.1 ± 2.2 14.5 ± 1.8 15.1 ± 1.2 15.0 ± 0.7 18.6 ± 2.3 13.7 ± 1.9
default 8.8 ± 1.0 9.8 ± 1.7 9.1 ± 0.9 9.8 ± 0.9 12.8 ± 1.7 8.8 ± 0.9

mix (x4) 13.4 ± 1.7 13.9 ± 2.1 13.0 ± 0.7 14.7 ± 1.6 15.5 ± 2.0 14.7 ± 2.3
default 9.2 ± 0.6 10.2 ± 1.7 9.0 ± 0.9 10.5 ± 0.9 10.6 ± 1.7 9.4 ± 0.9

default 10.2 ± 0.4 11.5 ± 0.5 10.7 ± 0.6 12.1 ± 0.6 11.3 ± 0.4 10.2 ± 0.7
mix (x4) 11.2 ± 1.1 12.3 ± 1.0 11.6 ± 0.9 12.2 ± 1.3 12.6 ± 1.0 10.3 ± 0.9

default 10.3 ± 0.4 11.2 ± 0.6 10.9 ± 0.7 12.0 ± 0.4 11.1 ± 0.5 10.1 ± 0.6
easy (x2) 10.9 ± 1.4 13.7 ± 1.3 12.8 ± 0.9 12.9 ± 1.4 11.4 ± 1.2 10.1 ± 0.7

default 10.3 ± 0.7 11.2 ± 0.3 10.6 ± 0.3 11.8 ± 0.7 11.5 ± 0.7 10.1 ± 0.6
easy (x4) 11.3 ± 0.8 12.5 ± 0.9 12.8 ± 1.3 11.9 ± 1.0 12.9 ± 0.8 9.9 ± 1.2

easy (x2) 11.7 ± 1.3 13.3 ± 0.4 13.7 ± 1.4 13.4 ± 0.2 15.4 ± 1.2 12.8 ± 1.6
hard (x2) 8.0 ± 0.5 8.1 ± 1.7 7.6 ± 0.7 9.2 ± 0.8 10.5 ± 1.5 7.1 ± 0.8

easy (x4) 14.6 ± 2.2 15.4 ± 1.6 15.5 ± 1.2 15.3 ± 1.0 17.8 ± 1.5 15.2 ± 1.8
hard (x4) 3.0 ± 0.4 3.3 ± 0.4 3.0 ± 0.3 3.4 ± 0.4 4.9 ± 0.6 4.2 ± 0.3

Train: average 12.0 ± 1.4 13.1 ± 1.1 13.0 ± 0.8 13.4 ± 0.8 14.5 ± 1.3 12.6 ± 1.4
Eval: average 9.1 ± 0.9 10.2 ± 1.1 9.7 ± 0.9 9.1 ± 1.0 11.1 ± 1.1 8.9 ± 0.9

Table 4.6: Scores on CrafterOODnum (mean and standard deviations over 10
random seeds) for agents trained for 1M environmental steps. Each setting has
two rows, denoting scores on the training and evaluation environments.

percentage of evaluation objects in the training environment further, the perfor-
mance of all agents consistently drops. Finally, in the especially difficult zero-
shot generalization scenario, when trained only on the first object (O1 = 100%),
the agent relies on pure chance or interacting with objects that do not change
(e.g., water, iron). The agent’s failure to generalize is expected: to perform well
on unseen evaluation objects, it must perform fast adaptation and systematic
generalization in terms of composing the previously obtained knowledge about
the observed objects and the inferred representations of the newly introduced
evaluation objects.

Motivated by this observation, we introduce object-centric agents, which
should (at least in principle) learn better representations by decomposing the in-
put images into sets of objects and their distances via positional encodings. Our
experiments show that the object-centric agents OC-SA and OC-CA (the last two
columns in Table 4.4) match the vanilla PPO agents on in-distribution and easy
OOD generalization. In the most difficult OOD generalization cases though

63 4.4 OOD Generalization Experiments

Env. Tree Coal Cow Zombie Skeleton

Easy (x4) 764 206 100 3 2.5
Easy (x2) 380 102 46 6 4.5
Default 189 50 26 15 9.5
Hard (x2) 95 27 13 33 19
Hard (x4) 52 12.5 6 60 38
Mix (all x4) 764 206 100 60 38

Table 4.7: CrafterOODnum environment object numbers.
Default is the original Crafter environment. Easy environments have (x2 or x4)
more resources and (x2 or x4) fewer enemies. In hard environments we decrease
the number of resources and increase the number of enemies. Mix environment
contains four times more resources and enemies.

Figure 4.3: An agent building a table. Top row: input images. Bottom row:
attention visualized by its intensity. Episode steps are plotted horizontally.

(the last three pairs of rows in Table 4.4), OC-SA and OC-CA generalize better
compared to PPO-CNN and PPO-SPCNN (9.9 vs 8.6 and 9.2 for O1 = 94%, 9.3
vs 7.3 and 7.7 forO1 = 97%, and 8.0 vs 7.3 and 7.7 forO1 = 100%). Additionally,
object-centric agents are interpretable and potentially easier to build on in future
work. We visualize their attention maps in Section 4.5.2. The observed gener-
alization gap makes environments with large differences in object distributions
(requiring zero-shot adaptation) fruitful for developing and evaluating novel fast-
adaptation [Schmidhuber, 1992, 1993b,c,d; Irie et al., 2022] and meta-learning
[Schmidhuber, 1987] agents, such as the ones based on Fast Weight Program-
mers [Schmidhuber, 1991c; Schmidhuber, 1992, 1993; Schlag et al., 2021; Irie
et al., 2021].

64 4.4 OOD Generalization Experiments

Figure 4.4: An agent collecting resources. Top row: input images. Bottom row:
attention visualized by its intensity. Episode steps are plotted horizontally.

4.4.2 CrafterOODnum - out-of-distribution object numbers.

To test generalization on different numbers of objects, we introduce the
CrafterOODnum environment. We vary the numbers of objects the agent in-
teracts with most frequently: trees, coal, cows, zombies, and skeletons. These
variants are particularly challenging as the agent might face never-before-seen sit-
uations such as fighting against more enemies or surviving in environments with
resources scarcer compared to what it was trained on. In Table 4.6 we show the
numbers of objects in the respective environments. In Table 4.6, ‘Default‘ is the
Crafter environment introduced in [Hafner, 2021]. In ‘Easy‘ environments, we
increase (double or quadruple) the number of objects representing resources
and decrease the number of enemies. ‘Hard‘ environments consist of fewer
resources and more enemies. In the ‘mix‘ environment, we quadruple the num-
bers of all objects—making it on the one hand easier in terms of resources, but
on the other hand harder in terms of enemies.

For each pair of training and evaluation environments in Table 4.6 the agents
with the best generalization score are bolded. The object-centric agent OC-SA
outperforms all models in all but one case. Note how the performance decreases
when transferring to harder environments (Easy to Default) and increases when
transferring to easier environments (Default to Easy), confirming the intended
design difficulty level. The performance drop is largest when transferring from
‘Easy (x4)‘ to ‘Hard (x4)‘ environments where the evaluation environment con-
tains 16x fewer resources and 16x more enemies than the training environment.
Finally, the object-centric OC-SA agent achieves the best generalization on av-
erage across all the environments (the last row in Table 4.6).

65 4.5 Object-centric Agents Analysis

Variant Crafter Score

OC-CA 10.0 ± 0.4
OC-CA + Residual MLP 7.3 ± 0.4
OC-CA + LayerNorm 4.1 ± 0.3
OC-CA + Residual MLP + LayerNorm 3.1 ± 0.6
OC-CA + Slot Competition 7.1 ± 0.3

OC-CA, Number of Slots=1 8.2 ± 0.9
OC-CA, Number of Slots=2 7.8 ± 0.4
OC-CA, Number of Slots=4 8.7 ± 0.7
CA, Number of Slots=8 10.0 ± 0.4
OC-CA, Number of Slots=16 9.1 ± 0.9

OC-CA, Number of Heads=1 6.6 ± 0.5
OC-CA, Number of Heads=2 7.3 ± 0.9
OC-CA, Number of Heads=4 8.0 ± 0.6
CA, Number of Heads=8 10.0 ± 0.4
CA, Number of Heads=16 7.2 ± 0.8

OC-CA, Patch Size=1, Stride=1 6.9 ± 0.9
OC-CA, Patch Size=8, Stride=8 7.2 ± 0.4
OC-CA, Patch Size=12, Stride=8 8.7 ± 0.7
OC-CA, Patch Size=12, Stride=12 8.9 ± 0.7
OC-CA, Patch Size=16, Stride=8 6.2 ± 0.5
OC-CA, Patch Size=16, Stride=16 10.0 ± 0.4

Table 4.8: OC-CA Agents Network Ablation.

4.5 Object-centric Agents Analysis

In this section, we first perform an ablation study of object-centric agents, in-
specting various design choices. Afterwards, we visualize attention patterns of
object-centric agents, and find their policies to be interpretable and to match
our gameplay intuitions.

4.5.1 Object-centric Agents Ablation

To the best of our knowledge, this is the first time cross-attention-based meth-
ods (e.g. SlotAttention- and Perceiver-like methods) are used in an open world

66 4.5 Object-centric Agents Analysis

Figure 4.5: An agent crafting weapons. Top row: input images. Bottom row:
attention visualized by its intensity. Episode steps are plotted horizontally.

Figure 4.6: An agent defending against enemies. Top row: input images. Bottom
row: attention visualized by its intensity. Episode steps are plotted horizontally.

Figure 4.7: Learned attention over the whole input image instead of a fixed patch
grid. Top row: input images. Bottom row: attention visualized by its intensity.

67 4.5 Object-centric Agents Analysis

survival game. In this section, we perform an ablation analysis, compare our
agent to the standard architectural choices from the literature and show that
these vanilla agents underperform.

The ablation study results are shown in Table 4.8. Firstly, cross-attention-
based methods typically employ LayerNorm [Ba et al., 2016] and residual MLPs.
In Table 4.8 we can see that the variant using these “CA + Residual MLP + Lay-
erNorm” underperforms. Including any of these modules individually (“CA +
Residual MLP” and “CA + LayerNorm”) does not improve performance. More-
over, competition over slots (a softmax over queries) “CA + Slot Competition”
akin to SlotAttention also hurts the downstream performance. This led us to con-
verge to an architecture that uses a single cross-attention over the input image,
with no latent self-attention, no layer normalization, no residual connections,
and no slot-wise competition.

We found the optimal number of heads and slots to be eight. We speculate
that the higher number of slots lets each attend to different objects in the input,
and the higher number of heads allows for operation specialization for each of
the heads. Finally, we observe that a larger patch size (with the appropriate
stride) improves performance. On the other hand, the agents with learned ob-
ject representations “CA, Patch Size=1, Stride=1” do not perform as well as the
attention with larger patches. Although in theory more powerful as it can attend
to varying object sizes, this variant needs first to learn which pixels belong to
each object. In Crafter, objects are of equal size, so the patches can be cho-
sen to correspond to those. We suspect the attention over pixels would better
generalize to objects of different sizes.

4.5.2 OC-SA Agents Visualization and Interpretability.

Here we visualize the CLS token attention in OC-SA. Visualizations in Figs. 4.3
to 4.6 stem from a single agent and are representative of most episodes of a
trained agent. In Fig. 4.4, we can see an agent collecting resources. In the
first frame (the leftmost figure) the agent notices a tree nearby and then focuses
consistently on it and collects it. In the final frame, the agent attends to the
newly collected wood resource.

The episode is continued in Figure 4.3, in which the agent builds a table.
After collecting one tree, the agent needs to collect another one to build a table.
It spots more trees in its vicinity and goes towards them, never losing sight of
the tree and the position where it wants to craft a table. It collects another tree
and attends again to the wood resources. Determining that it has enough wood
(two pieces), it builds a table to facilitate crafting of further tools and weapons.

68 4.6 Related Work

Once it has built the table, the agent can use it to craft tools (weapons), but
it first needs to collect more resources. In Figure 4.5 it collects the two nearby
trees and uses them to build a wooden sword and a wooden pickaxe (shown in
the inventory). The sequence is reminiscent of what a human player would do:
collect one tree, craft a sword, collect another tree and craft a pickaxe. It can
use pickaxe to collect stones or coal or to defend against enemies.

In Fig. 4.6, an agent defends against a zombie during the night (the reason
why the frame color is darker). Initially, the agent does not attend to the zombie,
probably because it is still far away. As the zombie gets closer, it attends more
and more to it and finally defeats it.

4.5.3 OC-CA Agents Visualization and Interpretability.

In Figure 4.7 we visualize the learned attention patterns when each slot can at-
tend to any set of pixels in the input image, compared to only a predefined set of
patches from a fixed grid. We find that the learned attention attends to the salient
objects in the scene: zombies (1st, 3rd, and 5th columns), trees (2nd, 3rd, and
4th columns), resources (water overall), and the inventory. We observe more
numerous but smaller attention patterns than the patch-based attention that is
typically focused on two to five patches. Although in theory more powerful, in
practice the learned attention models underperform the patch-based ones. We
suspect this is because the learned attention agents first need to find out what
an object actually is, whereas patch-based ones have a more “guided” learning
process. We speculate that greater gains of learned attention would occur in
scenarios with objects of varying sizes, in which case a fixed grid would be a
too rigid representation.

4.6 Related Work

RL benchmarks have played a crucial role in developing and evaluating novel
(deep) RL algorithms [Bellemare et al., 2013; Brockman et al., 2016; Kempka
et al., 2016; Beattie et al., 2016; Tassa et al., 2018; Juliani et al., 2018]. An
especially important role has been played by video games including arcade
games [Bellemare et al., 2013], racing environments [Wymann et al., 2000], first-
person shooters [Kempka et al., 2016], strategy games [Synnaeve et al., 2016;
Vinyals et al., 2017], and open world games [Guss et al., 2019, 2021]. For an
extensive survey of deep (reinforcement) learning for video game playing see

69 4.6 Related Work

[Justesen et al., 2019]. Open world games have recently received special atten-
tion, e.g., Minecraft [Johnson et al., 2016; Guss et al., 2019, 2021].

However, these environments come with their drawbacks. For example,
Minecraft is too complex to be solved from scratch by current methods [Milani
et al., 2020]. The recently published method for mining a diamond [Baker et al.,
2022] uses human-annotated data to bootstrap learning via behavioral cloning.
It is also unclear by what metric agents should be evaluated. On the other hand,
Atari requires large amounts of computation: training an agent with five random
seeds on each game for 200M steps requires over 2000 GPU days [Castro et al.,
2018; Hessel et al., 2018; Hafner, 2021], which hinders fast iteration cycles.
Most importantly, many Atari games are nearly deterministic, so the agents can
approximately memorize action sequences and are not required to generalize to
new situations [Machado et al., 2018].

Environments like ProcGen [Cobbe et al., 2020] evaluate the generalization
capabilities of agents through procedural level generation, which requires sub-
stantial compute [Hafner, 2021]. Chan et al. [Chan et al., 2022] recently in-
vestigated how RL algorithms perform in environments where feature distribu-
tion is not uniform but Zipfian, similar to the one of objects encountered in
the real world, or in our CrafterOODapp environments. Generalization bench-
marks based on DeepMind’s Control Suite [Tassa et al., 2018; Stone et al., 2021;
Hansen and Wang, 2021; Grigsby and Qi, 2020; Zhang et al., 2018] test the
agent’s robustness to background variations but not to variations of environmen-
tal object configurations, e.g., visual appearance, number of objects, or object
compositions. For a thorough recent survey on generalization in RL, see [Kirk
et al., 2021].

The Crafter game addresses these shortcomings. Crafter is an open world sur-
vival game for RL research whose dynamics are inspired by the popular game
Minecraft. The benchmark is designed to address existing research challenges,
such as strong generalization via procedural generation, deep exploration via
achievements conditioned on one another, learning from high-dimensional im-
age observations and sparse rewards that require long-term reasoning and credit
assignment. It facilitates evaluation by combining semantically meaningful
achievements and fast iteration speed. Our newly introduced CrafterOODapp
and CrafterOODnum inherit all these benefits and additionally test some agent’s
generalization ability and robustness in presence of unseen objects, setting the
stage for the development of fast-adaptation or meta-learning agents.

Research on RL neural network-based policies that generalize to OOD envi-
ronments is an important research area currently tackled from several directions
[Kirk et al., 2021]. One potential explanation of the poor generalization of neu-

70 4.7 Conclusion and Discussion

ral networks is that they cannot dynamically and flexibly bind the information
distributed throughout the network [Greff et al., 2020]. This is also known as
the binding problem [Von Der Malsburg, 1994; Roskies, 1999]. Recent work
addresses this through object-centric neural networks that learn (discrete) object
representations from raw visual input, to support efficient learning and general-
ization to novel scenarios and behaviors. Object-centric methods have success-
fully been used for OOD generalization in both supervised and unsupervised
learning [Greff et al., 2015, 2016, 2017; van Steenkiste et al., 2018; Eslami et al.,
2016; Kosiorek et al., 2018; Stanić and Schmidhuber, 2019; Burgess et al., 2019;
Greff et al., 2019; Engelcke et al., 2020; Locatello et al., 2020; Stanić et al., 2021;
Creswell et al., 2021; Kipf et al., 2021] and in RL [Watters et al., 2019a; Veera-
paneni et al., 2020; Kipf et al., 2020; Carvalho et al., 2021]. To the best of our
knowledge, this is the first time they are used in open world RL survival games.

Architecturally closest to our work are methods that learn a set of vectors
(slots) by attending to the input via cross-attention. This idea was introduced in
SetTransformer [Lee et al., 2019] and successfully used for object detection [Car-
ion et al., 2020], unsupervised learning of objects [Locatello et al., 2020; Kipf
et al., 2021], learning permutation-invariant agents [Tang et al., 2020; Tang and
Ha, 2021], and general perception modules [Jaegle et al., 2021b,a; Alayrac et al.,
2022]. Most similar to our object-centric agents are the AttentionAgent [Tang
et al., 2020] and the SensoryNeuron [Tang and Ha, 2021]. The former uses
neuroevolution to optimize an architecture with a hard attention bottleneck, re-
sulting in a network that only receives a fraction of the visual input and gen-
eralizes to unseen backgrounds. The latter further improves AttentionAgent’s
robustness to permuted orderings of its inputs. Our agents also share similari-
ties with attention-based modular neural networks [Santoro et al., 2018; Goyal
et al., 2019; Mott et al., 2019; Carvalho et al., 2021], learning a (modular) repre-
sentation by attending over the input. However, unlike our object-centric work,
prior work did not consider object-centric agents for OOD generalization in
procedurally generated open world games.

4.7 Conclusion and Discussion

Challenging benchmarks are essential for the research on new reinforcement
learning methods. However, they should be simple enough to allow for conve-
nient systematic analysis and fast iteration cycles. Tests against strong baselines
are crucial.

The paper we described in this chapter contributions to all of the above. We

71 4.7 Conclusion and Discussion

report important observations on the Crafter environment. Our analysis shows
that PPO-based agents trained for 20M steps can unlock all but the last achieve-
ment. However, this impressive score still falls short of the human score [Hafner,
2021], indicating that Crafter remains an open research challenge, especially for
sample-efficient RL agents.

We introduce CrafterOODapp and CrafterOODnum, new environments
that evaluate some agent’s robustness against varying object appearances and
numbers of objects. Baseline agents fail to adapt in evaluation environments
containing unseen objects, whereas our novel object-centric agents perform
well. An additional benefit of object-centric agents is their interpretability. In
the investigated environments, self-attention-based methods outperform cross-
attention methods. Future work will confirm or disconfirm similar superiority
in environments with varying object sizes. Further variations could also include
different reward between training and test environments or different production
trees (such as having more or less path leading to an achievement) in the evalu-
ation environments.

Our OOD environments should help to evaluate fast-adaptation and meta-
learning agents. For example, object-centric agents could be improved by incor-
porating decoding objectives, to extract as much signal from the environment
as possible, and by exploring ways of training larger object-centric networks.
It would also be interesting to investigate whether object-centric inductive bi-
ases can enable model-based RL agents to learn better world models. Crafter
and our newly introduced CrafterOOD are good candidates for exploring all
of these directions, offering control of environmental configurations, excellent
visual inspection, and fast iteration cycles.

Finally, goals and actions only implicitly modulate the learning of object rep-
resentations. It would be interesting to investigate ways of explicitly modulating
objects either by conditioning them on the goal or the action.

72 4.7 Conclusion and Discussion

Chapter 5

Synchrony-based Object Discovery
with Complex-Valued Autoencoders

Current state-of-the-art object-centric models use slots and attention-based rout-
ing for binding. However, this class of models has several conceptual limitations:
the number of slots is hardwired; all slots have equal capacity; training has
high computational cost; there are no object-level relational factors within slots.
Synchrony-based models in principle can address these limitations by using
complex-valued activations which store binding information in their phase com-
ponents. However, working examples of such synchrony-based models have
been developed only very recently, and are still limited to toy grayscale datasets
and simultaneous storage of less than three objects in practice. In this chap-
ter, we introduce architectural modifications and a novel contrastive learning
method that greatly improve the state-of-the-art synchrony-based model [Löwe
et al., 2022]. For the first time, we obtain a class of synchrony-based models
capable of discovering objects in an unsupervised manner in multi-object color
datasets and simultaneously representing more than three objects.

Slot-based approaches have several conceptual limitations. First, the binding
information (i.e. addresses) about object instances are maintained only by the
constant number of slots—a hard-wired component which cannot be adapted
through learning. This restricts the ability of slot-based models to flexibly rep-
resent a varying number of objects with variable precision without tuning the
slot size, number of slots, number of iterations, etc. Second, the inductive bias
used by the grouping module strongly enforces independence among all pairs
of slots. This restricts individual slots to store relational features at the object-

This chapter is based on “Contrastive Training of Complex-Valued Autoencoders for Object
Discovery” [Stanić et al., 2023b] paper, which was published at NeurIPS 2023.

73

74

level, and requires additional processing of slots using a relational module, e.g.,
Graph Neural Networks [Battaglia et al., 2016; Gilmer et al., 2017] or Trans-
former models [Vaswani et al., 2017; Schmidhuber, 1992; Schlag et al., 2021].
Third, binding based on iterative attention is in general computationally very de-
manding to train [Löwe et al., 2022]. Additionally, the spatial broadcast decoder
[Watters et al., 2019b] (a necessary component in these models) requires mul-
tiple forward/backward passes to render the slot-wise reconstruction and alpha
masks, resulting in a large memory overhead as well.

Recently, Löwe et al. [2022] revived another class of neural object binding
models [Mozer et al., 1991; Mozer, 1998; Reichert and Serre, 2014] (synchrony-
based models) which are based on complex-valued neural networks. Synchrony-
based models are conceptually very promising. In principle, they address most
of the conceptual challenges faced by slot-based models. The binding mecha-
nism is implemented via constructive or destructive phase interference caused
by the addition of complex-valued activations. They store and process informa-
tion about object instances in the phases of complex activations which are more
amenable to adaptation through gradient-based learning. Further, they can in
principle store a variable number of objects with variable precision by partition-
ing the phase components of complex activations at varying levels of granularity.
Additionally, synchrony-based models can represent relational information di-
rectly in their distributed representation, i.e., distance in phase space yields an
implicit relational metric between object instances (e.g., inferring part-whole
hierarchy from distance in “tag” space [Mozer, 1998]). Lastly, the training of
synchrony-based models is computationally more efficient by two orders of mag-
nitude [Löwe et al., 2022].

However, the true potential of synchrony-based models for object binding is
yet to be explored; the current state-of-the-art synchrony-based model, Complex-
valued AutoEncoder (CAE) [Löwe et al., 2022], still has several limitations. First,
it is yet to be benchmarked on any multi-object datasets [Kabra et al., 2019] with
color images (even simplisitic ones such as Tetrominoes) due to limitations
in the evaluation method to extract discrete object identities from continuous
phase maps [Löwe et al., 2022]. Second, we empirically observe that it shows
low separability (Table 5.2) in the phase space, thereby leading to very poor
(near chance-level) grouping performance on dSprites and CLEVR. Lastly, CAE
can simultaenously represent at most 3 objects [Löwe et al., 2022], making it
infeasible for harder benchmark datasets [Kabra et al., 2019; Greff et al., 2022].

Our goal is to improve the state-of-art synchrony models by addressing these
limitations of CAE [Löwe et al., 2022]. First, we propose a few simple archi-
tectural changes to the CAE: i) remove the 1x1 convolution kernel as well as

75 5.1 Background

the sigmoid activation in the output layer of decoder, and ii) use convolution
and upsample layers instead of transposed convolution in the decoder. These
changes enable our improved CAE, which we call CAE++, to achieve good
grouping performance on the Tetrominoes dataset—a task on which the orig-
inal CAE completely fails. Further, we introduce a novel contrastive learning
method to increase separability in phase values of pixels (regions) belonging
to two different objects. The resulting model, which we call Contrastively
Trained Complex-valued AutoEncoders (CtCAE), is the first kind of synchrony-
based object binding models to achieve good grouping performance on multi-
object color datasets with more than three objects (Figure 5.2). Our contrastive
learning method yields significant gains in grouping performance over CAE++,
consistently across three multi-object color datasets (Tetrominoes, dSprites
and CLEVR). Finally, we qualitatively and quantitatively evaluate the separability
in phase space and generalization of CtCAE w.r.t. number of objects seen at
train/test time.

5.1 Background

We briefly overview the CAE architecture [Löwe et al., 2022] which forms the
basis of our proposed models. CAE performs binding through complex-valued
activations which transmit two types of messages: magnitudes of complex acti-
vations to represent the strength of a feature and phases to represent which fea-
tures must be processed together. The constructive or destructive interference
through addition of complex activations in every layer pressurizes the network
to use similar phase values for all patches belonging to the same object while
separating those associated with different objects. Patches of the same object
contain a high amount of pointwise mutual information so their destructive in-
terference would degrade its reconstruction.

The CAE is an autoencoder with real-valued weights that manipulate
complex-valued activations. Let h and w denote positive integers. The input
is a positive real-valued image x′ ∈ Rh×w×3 (height h and width w, with 3 chan-
nels for color images). An artificial initial phase of zero is added to each pixel
of x′ (i.e., ϕ = 0 ∈ Rh×w×3) to obtain a complex-valued input x ∈ Ch×w×3:

x = x′ ⊙ eiϕ, where ⊙ denotes a Hadamard product (5.1)

Let din, dout and p denote positive integers. Every layer in the CAE transforms
complex-valued input x ∈ Cdin to complex-valued output z ∈ Cdout (where we
simply denote input/output sizes as din and dout which typically have multiple

76 5.1 Background

dimensions, e.g., h×w×3 for the input layer), using a function fw : Rdin → Rdout

with real-valued trainable parameters w ∈ Rp. fw is typically a convolutional or
linear layer. First, fw is applied separately to the real and imaginary components
of the input:

ψ = fw (Re(x)) + fw (Im(x)) i ∈ Cdout (5.2)

Note that both Re(x), Im(x) ∈ Rdin . Second, separate trainable bias vectors
bm, bϕ ∈ Rdout are applied to the magnitude and phase components of ψ ∈
Cdout :

mψ = |ψ|+ bm ∈ Rdout ; ϕψ = arg(ψ) + bϕ ∈ Rdout (5.3)

Third, the CAE uses an additional gating function proposed by Reichert and
Serre [2014] to further transform this “intermediate” magnitude mψ ∈ Rdout .
This gating function dampens the response of an output unit as a function of
the phase difference between two inputs. It is designed such that the corre-
sponding response curve approximates experimental recordings of the analo-
gous curve from a Hodgkin-Huxley model of a biological neuron [Reichert and
Serre, 2014]. Concretely, an intermediate activation vector χ ∈ Rdout (called
classic term [Reichert and Serre, 2014]) is computed by applying fw to the mag-
nitude of the input x ∈ Cdin , and a convex combination of this classic term
and the magnitude mψ (called synchrony term [Reichert and Serre, 2014]) from
Eq. 5.3 is computed to yield “gated magnitudes” mz ∈ Rdout as follows:

χ = fw (|x|) + bm ∈ Rdout ; mz =
1

2
mψ +

1

2
χ ∈ Rdout (5.4)

Finally, the output of the layer z ∈ Cdout is obtained by applying non-linearities
to this magnitude mz (Eq. 5.4) while leaving the phase values ϕψ (Eq. 5.3) un-
touched:

z = ReLU(BatchNorm(mz))⊙ eiϕψ ∈ Cdout (5.5)

The ReLU activation ensures that the magnitude of z is positive, and any phase
flips are prevented by its application solely to the magnitude component mz.
For more details of the CAE [Löwe et al., 2022] and gating function [Reichert
and Serre, 2014] we refer the readers to the respective papers. The final object
grouping in CAE is obtained through K-means clustering based on the phases at
the output of the decoder; each pixel is assigned to a cluster corresponding to
an object [Löwe et al., 2022].

77 5.2 Method

Encoder

Decoder

M
a
g
n
it

u
d
e
s

P
h
a
se

s

Addresses

Features

Addresses

Features

Anchor
Address

Anchor
Feature

Magnitudes Addresses

Phases Features

Sample Negative Pairs Features

Sample Positive Pair Features

Anchor Features

+ _ _ _

Encoder
Phases

Encoder
Magnitudes

D
e
co

d
e
r

D
e
co

d
e
r

X

X

Figure 5.1: Sampling process of positive (green) and negative (red) pairs for one
anchor (purple) in the CtCAE model. The sampling process here is visualized
only for the decoder output. Note that we contrast the encoder output in an iden-
tical manner. Anchor address (the purple box marked with an X) corresponds to
the patch of magnitude values and the feature corresponds to the phase values.
See Contrastive Training of CAEs in Section 5.2 for more details.

5.2 Method

We describe the architectural and contrastive training details used by our pro-
posed CAE++ and CtCAE models respectively below.

CAE++. We first propose some simple but crucial architectural modifications
that enable the vanilla CAE [Löwe et al., 2022] to achieve good grouping perfor-
mance on multi-object datasets such as Tetrominoes with color images. These
architectural modifications include — i) Remove the 1x1 convolution kernel and
associated sigmoid activation in the output layer (“fout” in Löwe et al. [2022]) of
the decoder, ii) Use convolution and upsample layers in place of transposed con-
volution layers in the decoder (cf. “fdec” architecture in Table 3 from Löwe et al.
[2022]). We term this improved CAE variant that adopts these architectural mod-
ifications as CAE++. As we will show below in Table 5.1, these modifications
allow our CAE++ to consistently outperform the CAE across all 3 multi-object
datasets with color images.

Contrastive Training of CAEs. Despite the improved grouping of CAE++ com-
pared to CAE, we still empirically observe that CAE++ shows poor separa-

78 5.2 Method

bility1 (we also illustrate this in Section 5.3). This motivates us to introduce
an auxiliary training objective that explicitly encourages higher separability in
phase space. For that, we propose a contrastive learning method [Gutmann and
Hyvärinen, 2010; Oord et al., 2018] that modulates the distance between pairs
of distributed representations based on some notion of (dis)similarity between
them (which we define below). This design reflects the desired behavior to drive
the phase separation process between two different objects thereby facilitating
better grouping performance.

Before describing our contrastive learning method mathematically below,
here we explain its essential ingredients (illustrated in Figure 5.1). For setting
up the contrastive objective, we first (randomly) sample “anchors” from a set of
“datapoints”. The main idea of contrastive learning is to “contrast” these anchors
to their respective “positive” and “negative” examples in a certain representa-
tion space. This requires us to define two representation spaces: one associated
with the similarity measure to define positive/negative examples given an an-
chor, and another one on which we effectively apply the contrastive objective,
itself defined as a certain distance function to be minimized. We use the term
addresses to refer to the representations used to measure similarity, and conse-
quently extract positive and negative pairs w.r.t. to the anchor. We use the term
features to refer to the representations that are contrasted. As outlined earlier,
the goal of the contrastive objective is to facilitate separability of phase values.
It is then a natural choice to use the phase components of complex-valued out-
puts as features and the magnitude components as addresses in the contrastive
loss. This results in angular distance between phases (features) being modu-
lated by the contrastive objective based on how (dis)similar their corresponding
magnitude components (addresses) are. Since the magnitude components of
complex-valued activations are used to reconstruct the image (Equation (5.7)),
they capture requisite visual properties of objects. In short, the contrastive objec-
tive increases or decreases the angular distance of phase components of points
(pixels/image regions) in relation to how (dis)similar their visual properties are.

Our contrastive learning method works as follows. Let h′, w′, df, NA, and
M denote positive integers. Here we generically denote the dimension of the
output of any CAE layer as h′×w′×df. This results in a set of h′×w′ “datapoints”
of dimension df for our contrastive learning. From this set of datapoints, we
randomly sample NA anchors. We denote this set of anchors as a matrix A ∈
RNA×df ; each anchor is thus denoted as Ak ∈ Rdf for all k ∈ {1, ..., NA}. Now by

1We define separability as the minimum angular distance of phase values between a pair of
prototypical points (centroids) that belong to different objects

79 5.2 Method

Algorithm 1: Mining positive and negative pairs for a single anchor for
the contrastive objective. Scalar parameters are ktop — the number of
candidates from which to sample one positive pair and mbottom — the
number of candidates from which to sample (M − 1) negative pairs.

Inputs: anchor_address ∈ Rdf , addresses ∈ Rh′×w′×df , features
∈ Rh′×w′×df .

Params: Scalars ktop,mbottom,M .
1: addresses ← Flatten(addresses, dims=(0,1))
2: features ← Flatten(features, dims=(0,1))
3: distances ← CosineDistance(addresses, anchor_address)
4: top_k_features ← features[argsort(distances, dim=0)[:ktop]]
5: bottom_m_features ← features[argsort(distances,

dim=0)[−mbottom:]]
6: pos_pair_idx ∼ Uniform [0, ktop] ▷ sample 1 positive pair
7: neg_pair_idxs ∼ Uniform [0, mbottom]×(M − 1) ▷ M − 1 samples

without replacement
8: positive_pair ← top_k_features[pos_pair_idx]
9: negative_pairs ← bottom_m_features[neg_pair_idxs]

10: return positive_pair, negative_pairs

using Algorithm 1, we extract 1 positive and M − 1 negative examples for each
anchor. We denote these examples by a matrix Pk ∈ RM×df for each anchor
k ∈ {1, ..., NA} arranged such that Pk

1 ∈ Rdf is the positive example and all other
rows Pk

j ∈ Rdf for j ∈ {2, ...,M} are negative ones. Finally, our contrastive
loss is an adaptation of the standard InfoNCE loss [Oord et al., 2018] which is
defined as follows:

Lct =
1

NA

NA∑
k=1

log
(

exp
(
d
(
Ak;Pk

1

)
/τ
)∑M

j=1 exp
(
d
(
Ak;Pk

j

)
/τ
)) (5.6)

where NA is the number of anchors sampled for each input, d(xk; xl) refers to
the cosine distance between a pair of vectors xk, xl ∈ Rdf and τ ∈ R>0 is the
softmax temperature.

We empirically observe that applying the contrastive loss on outputs of both
encoder and decoder is better than applying it on only either one (Table 5.5). We
hypothesize that this is the case because it utilizes both high-level, abstract and
global features (on the encoder-side) as well as low-level and local visual cues
(on the decoder-side) that better capture visual (dis)similarity between positive

80 5.3 Results

and negative pairs. We also observe that using magnitude components of com-
plex outputs of both the encoder and decoder as addresses for mining positive
and negative pairs while using the phase components of complex-valued out-
puts as the features for the contrastive loss performs the best among all the other
possible alternatives (Table C.8). These ablations also support our initial intu-
itions (described above) while designing the contrastive objective for improving
separability in phase space.

Finally, the complete training objective function of CtCAE is:

L = Lmse + β · Lct ; Lmse = ||x′ − x̂||22 ; x̂ = |y| (5.7)

where L defines the loss for a single input image x′ ∈ Rh×w×3, and Lmse is the
standard reconstruction loss used by the CAE [Löwe et al., 2022]. The recon-
structed image x̂ ∈ Rh×w×3 is generated from the complex-valued outputs of
the decoder y ∈ Ch×w×3 by using its magnitude component. In practice, we
train all models by minimizing the training loss L over a batch of images. The
CAE baseline model and our proposed CAE++ variant are trained using only
the reconstruction objective (i.e. β = 0) whereas our proposed CtCAE model is
trained using the complete training objective.

5.3 Results

Here we provide our experimental results. We first describe details of the
datasets, baseline models, training procedure and evaluation metrics. We then
show results (always across 5 seeds) on grouping of our CtCAE model compared
to the baselines (CAE and our variant CAE++), separability in phase space,
generalization capabilities w.r.t to number of objects seen at train/test time and
ablation studies for each of our design choices. Finally, we comment on the
limitations of our proposed method.

Datasets. We evaluate the models on three datasets from the Multi-Object
datasets suite [Kabra et al., 2019] namely Tetrominoes, dSprites and CLEVR
(Figure 5.2) used by prior work in object-centric learning [Greff et al., 2019; Lo-
catello et al., 2020; Emami et al., 2021]. For CLEVR, we use the filtered version
[Emami et al., 2021] which consists of images containing less than seven ob-
jects. For the main evaluation, we use the same image resolution as Emami et al.
[2021], i.e., 32x32 for Tetrominoes, 64x64 for dSprites and 96x96 for CLEVR
(a center crop of 192x192 that is then resized to 96x96). For computational rea-
sons, we perform all ablations and analysis on 32x32 resolution. Performance

81 5.3 Results

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 5.2: Unsupervised object discovery on Tetrominoes, dSprites and
CLEVR with CtCAE. “Phase Rad.” (col. 5) is the radial plot with the phase val-
ues from -π to π radians. “Phase” (col. 6), are phase values (in radians) averaged
over the 3 output channels as a heatmap (colors correspond to those from “Phase
Rad.”) and “Magnitude” (col. 7) is the magnitude component of the outputs.

of all models are ordered in the same way on 32x32 resolution as the original
resolution (see Table 5.1), but with significant training and evaluation speed up.
In Tetrominoes and dSprites the number of training images is 60K whereas in
CLEVR it is 50K. All three datasets have 320 test images on which we report all
the evaluation metrics. For more details about the datasets and preprocessing,
please refer to Appendix C.1.

Models & Training Details. We compare our CtCAE model to the state-of-the-
art synchrony-basedmethod for unsupervised object discovery (CAE [Löwe et al.,
2022]) as well as to our own improved version thereof (CAE++) introduced in
Section 5.2. For more details about the encoder and decoder architecture of all
models see Appendix C.1. We use the same architecture as CAE [Löwe et al.,
2022], except with increased number of convolution channels (same across all
models). We train models for 50K steps on Tetrominoes, and 100K steps on
dSprites and CLEVR with Adam optimizer [Kingma and Jimmy Ba, 2015] with
a constant learning rate of 4e-4, i.e., no warmup schedules or annealing (all
hyperparameter details are given in Appendix C.1).

82 5.3 Results

Dataset Model MSE ↓ ARI-FG ↑ ARI-FULL ↑

Tetrominoes CAE 4.57e-2 ± 1.08e-3 0.00 ± 0.00 0.12 ± 0.02

(32x32) CAE++ 5.07e-5 ± 2.80e-5 0.78 ± 0.07 0.84 ± 0.01

CtCAE 9.73e-5 ± 4.64e-5 0.84 ± 0.09 0.85 ± 0.01

SlotAttention – 0.99 ± 0.00 –

dSprites CAE 8.16e-3 ± 2.54e-5 0.05 ± 0.02 0.10 ± 0.02

(64x64) CAE++ 1.60e-3 ± 1.33e-3 0.51 ± 0.08 0.54 ± 0.14

CtCAE 1.56e-3 ± 1.58e-4 0.56 ± 0.11 0.90 ± 0.03

SlotAttention – 0.91 ± 0.01 –

CLEVR CAE 1.50e-3 ± 4.53e-4 0.04 ± 0.03 0.18 ± 0.06

(96x96) CAE++ 2.41e-4 ± 3.45e-5 0.27 ± 0.13 0.31 ± 0.07

CtCAE 3.39e-4 ± 3.65e-5 0.54 ± 0.02 0.68 ± 0.08

SlotAttention – 0.99 ± 0.01 –

dSprites CAE 7.24e-3 ± 8.45e-5 0.01 ± 0.00 0.05 ± 0.00

(32x32) CAE++ 8.67e-4 ± 1.92e-4 0.38 ± 0.05 0.49 ± 0.15

CtCAE 1.10e-3 ± 2.59e-4 0.48 ± 0.03 0.68 ± 0.13

CLEVR CAE 1.84e-3 ± 5.68e-4 0.11 ± 0.07 0.12 ± 0.11

(32x32) CAE++ 4.04e-4 ± 4.04e-4 0.22 ± 0.10 0.30 ± 0.18

CtCAE 9.88e-4 ± 1.42e-3 0.50 ± 0.05 0.69 ± 0.25

Table 5.1: MSE and ARI scores (mean ± standard deviation across 5 seeds)
for CAE, CAE++ and CtCAE models for Tetrominoes, dSprites and CLEVR
on their respective full resolutions. For all datasets, CtCAE vastly outperforms
CAE++ which in turn outperforms the CAE baseline. Results for 32x32
dSprites and CLEVR are also provided, these follow closely the scores on the
full resolutions. SlotAttention results are from Emami et al. [2021].

Evaluation Metrics. We use the same evaluation protocol as prior work [Greff
et al., 2019; Locatello et al., 2020; Emami et al., 2021; Löwe et al., 2022] which
compares the grouping performance of models using the Adjusted Rand Index
(ARI) [Rand, 1971; Hubert and Arabie, 1985]. We report two variants of the
ARI score [Hubert and Arabie, 1985], i.e., ARI-FG and ARI-FULL consistent with
Löwe et al. [2022]. ARI-FG measures the ARI score only for the foreground and
ARI-FULL takes into account all pixels.

83 5.3 Results

Mask Phase Rad. Phase Img. Mask Phase Rad. Phase Img. Mask Phase Rad. Phase Img.

G
T
 M

a
sk

In
p
u
t

C
A

E
C

A
E
+

+
C

tC
A

E

G
T

M
a
sk

G
T
 M

a
sk

In
p
u
t

In
p
u
t

Tetrominoes dSprites CLEVR

Figure 5.3: CAE, CAE++ and CtCAE comparison on Tetrominoes (columns
1-3), dSprites (columns 4-6) and CLEVR (columns 7-9). First row: ground truth
masks and input images.

Unsupervised Object Discovery. Table 5.1 shows the performance of our
CAE++, CtCAE, and the baseline CAE [Löwe et al., 2022] on Tetrominoes,
dSprites and CLEVR. We first observe that the CAE baseline almost completely
fails on all datasets as shown by its very low ARI-FG and ARI-FULL scores. The
MSE values in Table 5.1 indicate that CAE even struggles to reconstruct these
color images. In contrast, CAE++ achieves significantly higher ARI scores,
consistently across all three datasets; this demonstrates the impact of the archi-
tectural modifications we propose. However, on the most challenging CLEVR
dataset, CAE++ still achieves relatively low ARI scores. Its contrastive learning-
augmented counterpart, CtCAE consistently outperforms CAE++ both in terms
of ARI-FG and ARI-FULL metrics. Notably, CtCAE achieves more than double
the ARI scores of CAE++ on the most challenging CLEVR dataset which high-
lights the benefits of our contrastive method. All these results demonstrate that
CtCAE is capable of object discovery (still far from perfect) on all datasets which
include color images and more than three objects per scene, unlike the exisiting
state-of-the-art synchrony-based model, CAE.

Quantitative Evaluation of Separability. To gain further insights into why our
contrastive method is beneficial, we quantitatively analyse the phase maps us-
ing two distance metrics: inter-cluster and intra-cluster distances. In fact, in all

84 5.3 Results

Dataset Model Inter-cluster (min) ↑ Inter-cluster (mean) ↑ Intra-cluster ↓

Tetrominoes CAE++ 0.14 ± 0.00 0.30 ± 0.02 0.022 ± 0.010

CtCAE 0.15 ± 0.01 0.31 ± 0.03 0.020 ± 0.010

dSprites CAE++ 0.13 ± 0.05 0.51 ± 0.05 0.034 ± 0.007

CtCAE 0.13 ± 0.03 0.39 ± 0.10 0.027 ± 0.009

CLEVR CAE++ 0.10 ± 0.06 0.53 ± 0.15 0.033 ± 0.013

CtCAE 0.12 ± 0.05 0.50 ± 0.12 0.024 ± 0.005

Table 5.2: Quantifying the Separability through inter- and intra-cluster metrics
of the phase space. For the inter-cluster metric, we report both the minimum
and mean across clusters.

CAE-family of models, final object grouping is obtained through K-means clus-
tering based on the phases at the output of the decoder; each pixel is assigned
to a cluster with the corresponding centroid. Inter-cluster distance measures the
Euclidean distance between centroids of each pair of clusters averaged over all
such pairs. Larger inter-cluster distance allows for easier discriminability during
clustering to obtain object assignments from phase maps. On the other hand,
intra-cluster distance quantifies the “concentration” of points within a cluster,
and is computed as the average Euclidean distance between each point in the
cluster and the cluster centroid. Smaller intra-cluster distance results in an eas-
ier clustering task as the clusters are then more condensed. We compute these
distance metrics on a per-image basis before averaging over all samples in the
dataset. The results in Table 5.2 show that, the mean intra-cluster distance (last
column) is smaller for CtCAE than CAE++ on two (dSprites and CLEVR) of
the three datasets. Also, even though the average inter-cluster distance (fourth
column) is sometimes higher for CAE++, the minimum inter-cluster distance
(third column)—which is a more relevant metric for separability—is larger for
CtCAE. This confirms that compared to CAE++, CtCAE tends to have better
phase map properties for object grouping, as is originally motivated by our con-
trastive method.

Object Storage Capacity. Löwe et al. [2022] note that the performance of CAE
sharply decreases for images with more than 3 objects. We report the perfor-
mance of CtCAE and CAE++ on subsets of the test set split by the number of
objects, to measure how their grouping performance changes w.r.t. the num-

85 5.3 Results

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure 5.4: CtCAE on CLEVR is able to infer more than four objects, although it
sometimes makes mistakes, such as specular effects or grouping together based
on color (two yellow objects).

ARI-FG ARI-FULL ARI-FG ARI-FULL ARI-FG ARI-FULL ARI-FG ARI-FULL

dSprites 2 objects 3 objects 4 objects 5 objects

CAE++ 0.29 0.58 0.39 0.53 0.43 0.45 0.45 0.44
CtCAE 0.45 0.76 0.48 0.72 0.48 0.65 0.48 0.61

CLEVR 3 objects 4 objects 5 objects 6 objects

CAE++ 0.32 0.35 0.33 0.32 0.31 0.26 0.32 0.27
CtCAE 0.53 0.71 0.52 0.70 0.47 0.67 0.45 0.68

Table 5.3: Object storage capacity: training on the full dSprites dataset and
evaluating separately on subsets containing images with 2, 3, 4 or 5 objects.
Analogously, training on the full CLEVR dataset and evaluating separately on
subsets containing images with 3, 4, 5 or 6 objects.

ber of objects. In dSprites the images contain 2, 3, 4 or 5 objects, in CLEVR
3, 4, 5 or 6 objects. Note that the models are trained on the entire training split
of the respective datasets. Table 5.3 shows that both methods perform well on
images containing more than 3 objects (their performance does not drop much
on images with 4 or more objects). We also observe that the CtCAE consistently
maintains a significant lead over CAE in terms of ARI scores across different
numbers of objects. In another set of experiments (see Appendix C.2), we also
show that CtCAE generalizes well to more objects (e.g. 5 or 6) when trained
only on a subset of images containing less than this number of objects. Addi-
tionally, we observe that CtCAE generalizes well to more objects (e.g. 5 or 6)
when trained only on a subset of images containing less than this number of

86 5.3 Results

Model ARI-FG ↑ ARI-FULL ↑

CAE 0.00 ± 0.00 0.12 ± 0.02

CAE-(fout 1x1 conv) 0.00 ± 0.00 0.00 ± 0.00

CAE-(fout sigmoid) 0.12 ± 0.12 0.35 ± 0.36

CAE-transp.+upsamp. 0.10 ± 0.21 0.10 ± 0.22

CAE++ 0.78 ± 0.07 0.84 ± 0.01

CtCAE 0.84 ± 0.09 0.85 ± 0.01

Table 5.4: Architectural ablations on Tetrominoes.

objects (see Appendix C.2 for results).

Ablation on Architectural Modifications. Table 5.4 shows an ablation study
on the proposed architectural modifications on Tetrominoes (for similar find-
ings on other datasets, see Appendix C.2.2). We observe that the sigmoid acti-
vation on the output layer of the decoder significantly impedes learning on color
datasets. A significant performance jump is also observed when replacing trans-
posed convolution layers [Löwe et al., 2022] with convolution and upsample
layers. By applying all these modifications, we obtain our CAE++ model that
results in significantly better ARI scores on all datasets, therefore supporting our
design choices.

Ablation on Feature Layers to Contrast. In CtCAE we contrast feature vectors
both at the output of the encoder and the output of the decoder. Table 5.5 jus-
tifies this choice; this default setting (Enc+Dec) outperforms both other options
where we apply the constrastive loss either only in the encoder or the decoder
output. We hypothesize that this is because these two contrastive strategies are
complementary: one uses low-level cues (dec) and the other high-level abstract
features (enc).

Qualitative Evaluation of Grouping. Finally, we conduct some qualitative
analyses of both successful and failed grouping modes shown by CAE++ and
CtCAEmodels through visual inspection of representative samples. In Figure 5.3,
Tetrominoes (columns 1-2), we observe that CtCAE (row 4) exhibits better
grouping on scenes with multiple objects of the same color than CAE++ (row
3). This is reflected in the radial phase plots (column 2) which show better sepa-

87 5.4 Related Work

Model ARI-FG ↑ ARI-FULL ↑

Enc-only 0.21 ± 0.11 0.29 ± 0.15

Dec-only 0.38 ± 0.17 0.69 ± 0.18

Enc+Dec 0.50 ± 0.05 0.69 ± 0.25

Table 5.5: Contrastive loss ablation for CtCAE on CLEVR.

rability for CtCAE than CAE++. Further, on dSprites (rows 3-4, columns 4-5)
and CLEVR (rows 3-4, columns 7-8), CtCAE handles the increased number of
objects more gracefully while CAE++ struggles and groups several of them to-
gether. For the failure cases, Figure 5.4 shows an example where CtCAE still has
some difficulties in segregating objects of the same color (row 2, yellow cube
and ball) (also observed sometimes on dSprites, see Figure C.10). Further, we
observe how the specular highlights on metallic objects (purple ball in row 1
and yellow ball in row 2) form a separate sub-part from the object (additional
grouping examples in Appendix C.3).

5.4 Related Work

Slot-based binding. A wide range of unsupervised models have been intro-
duced to perform perceptual grouping summarized well by Greff et al. [2020].
They categorize models based on the segregation (routing) mechanism used to
break the symmetry in representations and infer latent representations (i.e. slots).
Models that use “instance slots” cast the routing problem as inference in a mix-
ture model whose solution is given by amortized variational inference [Greff
et al., 2016, 2019], Expectation-Maximization [Greff et al., 2017] or other ap-
proximations (Soft K-means) thereof [Locatello et al., 2020]. While others [Es-
lami et al., 2016; Kosiorek et al., 2018; Stanić and Schmidhuber, 2019] that
use “sequential slots” solve the routing problem by imposing an ordering across
time. These models use recurrent neural networks and an attention mechanism
to route information about a different object into the same slot at every timestep.
Some models [Burgess et al., 2019; Engelcke et al., 2020] combine the above
strategies and use recurrent attention only for routing but not for inferring slots.
Other models break the representational symmetry based on spatial coordinates
[Crawford and Pineau, 2019; Lin et al., 2020] (“spatial slots”) or based on spe-
cific object types [Hinton et al., 2018] (“category slots”). All these models still

88 5.4 Related Work

maintain the “separation” of representations only at one latent layer (slot-level)
but continue to “entangle” them at other layers.

Synchrony-based binding. Synchrony-based models use complex-valued ac-
tivations to implement binding by relying on their constructive or destructive
phase interference phenomena. This class of models have been sparsely ex-
plored with only few prior works that implement this conceptual design for
object binding [Mozer et al., 1991; Mozer, 1998; Reichert and Serre, 2014;
Löwe et al., 2022]. These methods differ based on whether they employ both
complex-valued weights and activations [Mozer et al., 1991; Mozer, 1998] or
complex-valued activations with real-valued weights and a gating mechanism
[Reichert and Serre, 2014; Löwe et al., 2022]. They also differ in their reliance
on explicit supervision for grouping [Mozer et al., 1991] or not [Mozer, 1998;
Reichert and Serre, 2014; Löwe et al., 2022]. Synchrony-based models in con-
trast to slot-based ones maintain the “separation” of representations throughout
the network in the phase components of their complex-valued activations. How-
ever, none of these prior methods can group objects in color images with up to
6 objects or visual realism of multi-object benchmarks in a fully unsupervised
manner unlike ours. Concurrent work [Löwe et al., 2023] extends CAE by intro-
ducing new feature dimensions (“rotating features”; RF) to the complex-valued
activations. However, RF cannot be directly compared to CtCAE as it relies on ei-
ther depth masks to get instance grouping on simple colored Shapes or features
from powerful vision backbones (DINO [Caron et al., 2021]) to get largely se-
mantic grouping on real-world images such as multiple instances of cows/trains
or bicycles in their Figures 2 and 20 respectively.

Binding in the brain. The temporal correlation hypothesis posits that the mam-
malian brain binds together information emitted from groups of neurons that fire
synchronously. According to this theory [von der Malsburg, 1995; Singer and
Gray, 1995], biological neurons transmit information in two ways through their
spikes. The spike amplitude indicates the strength of presence of a feature while
relative time between spikes indicates which neuronal responses need to bound
together during further processing. It also suggests candidate rhythmic cycles in
the brain such as Gamma that could play this role in binding [Jefferys et al., 1996;
Fries et al., 2007]. Synchrony-based models functionally implement the same
coding scheme [von der Malsburg and Schneider, 1986; von der Malsburg and
Buhmann, 1992; Engel et al., 1992] using complex-valued activations where the
relative phase plays the role of relative time between spikes. This abstracts away

89 5.5 Conclusion and Discussion

all aspects of the spiking neuron model to allow easier reproduction on digital
hardware.

Contrastive learning with object-centric models. Contrastive learning for
object-centric representations has not been extensively explored, with a few
notable exceptions. The first method [Löwe et al., 2020] works only on toy
images of up to 3 objects on a black background while the second [Baldassarre
and Azizpour, 2022] shows results on more complex data, but requires com-
plex hand-crafted data augmentation techniques to contrast samples across a
batch. Our method samples positive and negative pairs within a single image
and does not require any data augmentation. Most importantly, unlike ours,
these models still use slots and attention-based routing, and thereby inherit all
of its conceptual limitations. Lastly, ODIN [Hénaff et al., 2022] alternately re-
fines the segmentation masks and representation of objects using two networks
that are jointly optimized by a contrastive objective that maximizes the similar-
ity between different views of the same object, while minimizing the similarity
between different objects. To obtain the segmentation masks for objects, they
simply spatially group the features using K-means. Their method relies on careful
data augmentation techniques such as local or global crops, viewpoint changes,
color perturbations, etc. which are applied to one object.

5.5 Conclusion and Discussion

We propose several architectural improvements and a novel contrastive learning
method to address the limitations of the current state-of-the-art synchrony-based
model for object binding, the complex-valued autoencoder (CAE [Löwe et al.,
2022]). Our improved architecture, CAE++, is the first synchrony-based model
capable of dealing with color images (e.g. Tetrominoes). Our contrastive learn-
ing method further boosts CAE++ by improving its phase separation process.
The resulting model, CtCAE, largely outperforms CAE++ on the rather chal-
lenging CLEVR and dSprites datasets.

Admittedly, our synchrony-based models still lag behind the state-of-the-art
slot-based models [Locatello et al., 2020; Singh et al., 2022], but this is to be
expected, as research on modern synchrony-based models is still in its infancy.
We hope that our work will inspire the community to invest greater effort in
such promising models and alternative conceptual designs for object discovery
in general.

90 5.5 Conclusion and Discussion

Chapter 6

Compositional Visual Reasoning with
LLMs as Programmers

Compositional visual question answering requires a model to answer questions
about visual content in a compositional manner, involving multiple steps of rea-
soning or considering relationships between different objects or entities within
an image. It is a complex task as it requires understanding both the visual infor-
mation in an image and the structure of the question, and reasoning about how
different visual elements relate to one another to generate the correct answer.
Recently, large progress has been made on many such vision and language
tasks by scaling end-to-end neural networks models in terms of size, training
data, and compute [Alayrac et al., 2022; Chen et al., 2022b; Yu et al., 2022;
Wang et al., 2022a; Gan et al., 2022; Lu et al., 2022; Li et al., 2023; Driess
et al., 2023; Chen et al., 2023b,a]. However, even the largest state-of-the-art
(SotA) models struggle in tasks that require compositional reasoning, ability to
generalize, fine-grained spatial reasoning capabilities, and counting [Bugliarello
et al., 2023; Paiss et al., 2023; Hsieh et al., 2023; Yuksekgonul et al., 2022;
Zhao et al., 2022; Hendricks and Nematzadeh, 2021]. An example of such task
is the following query: “Could the cookies on the table be equally distributed
among children?” [Surís et al., 2023]. To solve this, the model needs to detect
the cookies in the image, filter out the ones that are not on the table, detect chil-
dren, count cookies and children, and check if the cookies count is divisible by
the children count. Questions like these are difficult for current end-to-end vi-
sion and language models (VLMs). Scaling VLMs further makes them even more
data- and compute-hungry [Villalobos et al., 2022], so the scale alone seems un-

This chapter is based on “Towards Truly Zero-Shot Compositional Visual Reasoning with
LLMs as Programmers” [Stanić et al., 2023b] paper, that is currently under submission.

91

92

likely to solve these tasks, especially due to the exponentially-large long tail of
compositional tasks.

On the other hand, it is questionable whether solving compositional tasks
with a single monolithic end-to-end neural network is the optimal approach.
Intuitively, it might be easier to first decompose the task into several subtasks,
individually solve the subtasks, and then use the intermediate results to solve
the original task. This is reminiscent of the way humans approach compositional
problems. According to Daniel Kahneman’s framework [Kahneman, 2017], our
thought process can be thought of as consisting of two mechanisms: System
1 and System 2. System 2 is the “slow”, “analytical” system that can decom-
pose the task into subtasks, while System 1 is the “fast”, “reactive” system that
solves individual tasks such as recognizing patterns. In machine learning, the
early work on task decomposition was pioneered by Neural Module Networks
(NMNs) [Andreas et al., 2016; Johnson et al., 2017; Hu et al., 2017]. NMNs
are trained end-to-end in the hope that every module will learn a separate func-
tion that will be reusable across tasks. However, these models have a number
of drawbacks, namely that the program generation requires hand-tuned parsers,
they are difficult to optimize (sometimes requiring reinforcement learning), and
they have the issue of a module “collapse”, where some modules are never
activated and others take over all the work, contrary to the design intentions.

Recently, an alternative approach based on “tool use” gained popularity
[Cobbe et al., 2021; Komeili et al., 2021; Thoppilan et al., 2022; Parisi et al.,
2022; Zeng et al., 2022; Gao et al., 2023; Qin et al., 2023; Zhuge et al., 2023].
In “tool use”, an LLM solves a task by controlling (akin to System 2) a set of tools
(such as an object detector, akin to System 1) [Zeng et al., 2022; Shen et al.,
2023; Zhuge et al., 2023]. In particular, VisProg [Gupta and Kembhavi, 2023],
ViperGPT [Surís et al., 2023], and CodeVQA [Subramanian et al., 2023] show
great promise in solving visual question answering by using an LLM to generate a
program (in Python or a custom scripting language). During execution, the pro-
gram calls individual vision models (such as object detector, depth estimator)
through an API that is provided in the prompt. For example, to answer “Which
color is the jacket of the second person from the left?” (Figure 6.1a), the program
needs to detect people, sort them from left to right, select the second, detect their
jacket, and query its color. These models achieved SotA on compositional visual
question answering, visual grounding, and video temporal reasoning tasks. By
their construction, they are interpretable, compositional, adaptable (tools can
be upgraded on the fly), offer strong generalization, mathematical, and reason-
ing skills, and do not require gradient-based training. However, in their current
form, they heavily rely on human engineering of in-context (program) examples

93 6.1 LLMs as programmers for visual reasoning framework

(ICEs) in the prompt. Moreover, ICEs are dataset- and task-specific. To gener-
ate them, significant labor is required by highly skilled programmers. For this
reason, we argue that these methods should not be called “zero-shot” in their
current form.

In this work, we present a framework that mitigates these issues, makes LLMs-
as-programmers setup more robust, and removes the need for human engineer-
ing of ICEs. Our framework, whose effectiveness we show across a number
of compositional question-answering and video temporal reasoning tasks with
ViperGPT (but is universally applicable to other approaches), consists of the
following:

• Firstly, instead of using a simple API with only basic routines that call
individual tools, we introduce an “Abstract API”. Abstract API consists of
spatially and temporally abstract routines that remove the large burden on
the LLM to have strong spatial and temporal reasoning.

• Second, instead of relying on a large number of dataset-specific (question,
code)-pairs as ICEs, we introduce a setup that generates ICEs automatically.
Using a few labeled examples (which are significantly cheaper to obtain,
e.g. via crowd-sourcing), we generate query-code examples in a zero-
shot manner and use these as ICEs. This mitigates the need for human
engineering of ICEs.

• Third, we show how LLMs as controllers for visual reasoning can (to
some extent) perform “self-correction” through “self-debugging” and “self-
tuning” without any ground truth labels. In “self-debugging”, we gener-
ate new code when the previous fails to execute, either by providing the
LLM previous query-code pair and the execution error as feedback or from
scratch. In “self-tuning”, we show how the tool hyperparameters can be
tuned automatically if execution fails due to a module.

6.1 LLMs as programmers for visual reasoning frame-
work

In this section, we first provide a brief overview of the ViperGPT approach [Surís
et al., 2023] on top of which we show the utility of our framework. We then
describe each component of our framework, namely the Abstract API, automatic
generation of ICEs, and self-correction.

94 6.1 LLMs as programmers for visual reasoning framework

(a)

Query

Code LLM

Self-tuning

Visual
code

Python API

Visual tools

Answer

Abstract
routines

Few-shot
I, Q, A

ICEs

ACEs

(b)

Figure 6.1: (a) RefCOCO [Yu et al., 2016] example image. (b) A code-generating
LLM takes as input the query, the Python API (functions for “tool use” and Ab-
stract API routines (functions) we introduce in Section 6.1.2) and a number of
ICEs (we replace human-engineered ICEs by automatically-generated ACEs in
Section 6.1.3). The LLM generates code that takes as input the image and out-
puts an answer (here a bounding box). If code fails to run, “self-tuning” (Sec-
tion 6.1.4) can adjust parameters and generate new code.

6.1.1 Background

ViperGPT takes as input an image or a video and a textual query. The textual
query is fed into an LLM (Codex [Chen et al., 2021]), together with the tools API
and ICEs. The LLM generates a program that solves the given query using the
tools without further training. The information in the prompt is crucial for good
ViperGPT performance, as it is the only task-specific information provided. The
prompt consists of a Python API with the necessary functions to solve the visual
query, such as object detection, depth estimation, and language model queries.
Additionally, ViperGPT uses several dataset-specific ICEs in the prompt. As we
show in Section 6.2, performance depends heavily on these human-engineered
examples.

ViperGPT API defines an ImagePatch and a VideoSegment class that con-
tain image and video processing functions. Each function calls a pretrained
model to compute the result. The API in the prompt does not contain function
implementations, but it contains docstrings and query-code examples of their
use. The ViperGPT API defines the following functions: find takes as input
an image and a textual query, calls an open vocabulary detector and returns a
list of image patches of detected objects; exists takes as input an image and a
textual query and returns true if the query object exists in the image, otherwise
false; verify_property takes as input an image, a noun representing an object

95 6.1 LLMs as programmers for visual reasoning framework

and an attribute property to verify and returns a boolean whether the object
has this property; best_image_match that takes as input a list of image patches
and a textual query and returns the image patch that best matches the query;
best_text_match that takes as input a list of queries and one image, and re-
turns the query that best matches the image; compute_depth that computes the
median depth of an image or image patch; distance which computes the pixel-
distance between two images; simple_query which handles textual queries that
are not decomposable, by calling an image captioning model; select_answer
that given a context text describing a scene and a list of possible answers queries
an LLM to select the correct answer. The VideoSegment class does not contain
any functions that call individual models, but only the start and end point of the
video segment and an iterator over the frames, which returns an ImagePatch
object. For the full ViperGPT API, see Appendix D.4.

The code-generating LLM outputs code that attempts to solve the query. This
code is executed, taking as input an image or a video (and optionally a list of
possible answers) and outputs a result (e.g. a bounding box or a string). Due
to generating programs in native Python code, ViperGPT avoids the need for
custom interpreters and can leverage Python built-in functions (e.g. sort, if/else
control flows, math functions, etc.).

6.1.2 Abstract API through visual routines

When programming, we continuously build new layers of abstraction. We start
from a set of primitive functions and then abstract them away by adding new
functions. These are then grouped into libraries, and additional layers of ab-
straction are built on top. By abstracting away the implementation details, we
are able to build systems with ever-increasing capabilities and complexity. Mo-
tivated by this, we introduce a set of spatially and temporally abstract functions
(routines 1) that abstract away a number of lines of code for the same function-
ality and together make the Abstract API. From a practical perspective, we are
motivated by a number of failure cases observed in the experiments (see Sec-
tion 6.2). As presented in Section 6.1.1, ViperGPT’s API is fairly simple (contains
almost exclusively functions to call pretrained models). Although simplicity is
good and often desirable, in the case of visual reasoning with LLMs as program-
mers, the lack of expressive visual routines requires the code-generating LLM
to have strong spatial and temporal reasoning capabilities. Qualitative analysis

1Note that our “routines” do not correspond to the visual routines of Ullman [1987] such as
tracing or scanning.

96 6.1 LLMs as programmers for visual reasoning framework

showed that this is often not the case and that the current LLMs are not yet perfect
in these terms (e.g. they confuse left and right, top and bottom). For example, for
the query “return the second person from the right”, the program generated by
the LLM correctly sorts the persons along the horizontal axis but then wrongly
takes the second index in the array (instead of the second last). Similarly, they
sometimes “confuse” temporal order, e.g., if a “before” event means a smaller
or a larger time index.

For these reasons, we introduce a set of spatially and temporally ab-
stract routines. We add the following spatial routines: get_patch_left_of,
get_patch_right_of, get_patch_above_of, get_patch_below_of for rela-
tional retrieval relative to a patch; get_patch_closest_to_anchor_object
that sorts patches by their distance to an anchor object and returns
the one with the smallest distance; sort_patches_left_to_right,
sort_patches_bottom_to_top, and sort_patches_front_to_back to sort
the list of patches along horizontal, vertical or depth axis; get_middle_patch
to get the middle patch from a given list of image patches; For videos, we add
temporal routines for event “localization”: get_video_segment_of_event,
get_video_segment_before_event, get_video_segment_after_event,
and routines to either caption a video: caption_video or answer a simple
question about the video: simple_query. The routines that we introduce
are general in the sense that they are not specific to any individual task or
dataset. This facilitates their reuse across tasks and avoids engineering task and
dataset-specific routines. It is an open research question what the “optimal” set
of primitive routines is. Another exciting research direction is using LLM with
their own abstract routines, then reusing those to come up with even more
abstract routines and so on. We leave these for future work.

6.1.3 Automatic generation of in-context examples

In-context examples (ICEs) greatly influence the performance of LLMs [Brown
et al., 2020; Chen et al., 2023]. For example, ViperGPT [Surís et al., 2023]
uses between 10 and 16 hand-engineered dataset-specific query-code ICEs per
dataset. Similarly, VisProg [Gupta and Kembhavi, 2023] uses between 16 and
31 ICEs and CodeVQA [Subramanian et al., 2023] about 50 ICEs. However,
constructing these ICEs requires heavy human engineering, as they might need
to be rewritten in a way that the LLM can use them to “generalize” to other
examples across the dataset. Furthermore, the constructed examples are specific
not only to the dataset but also to the LLM and the API. If any of those changes,
they need to be written from scratch. Finally, to write good query-code ICEs,

97 6.1 LLMs as programmers for visual reasoning framework

highly skilled labor is required, ideally someone familiar with the workings of
LLMs and a good grasp of Python programming.

In our work, we move beyond this need for human engineering of query-
code ICEs. We start from a small set of labeled examples (e.g. 16 image-
question-answer tuples), as is common in few-shot transfer learning [Zhai et al.,
2019; Kolesnikov et al., 2020]. We run our framework in a zero-shot man-
ner (without any ICEs) on these few-shot examples, sort the results by accu-
racy, select the best-performing programs, pair them with the corresponding
queries, and use them as ICEs during test time. We call such ICEs automatically-
generated in-context examples (ACEs). Importantly, no gradient-based optimiza-
tion is performed on the few-shot examples. Intuitively, this works since even
if the LLM does not always generate a program that solves the task correctly,
it might sometimes come up with a correct program. Since retrieval is often
easier than generating programs from scratch, the reuse of the correct programs
improves performance on the test set.

ACEs provide a number of benefits over manually writing ICEs. First of all,
ACEs are much cheaper to obtain as they do not require highly skilled labor to
write them. Second, the algorithm that generates ACEs is general: it is neither
specific to the API nor the LLM. If any of these changes, ACEs can be easily gener-
ated by re-running the algorithm. Furthermore, they can be seen as a first step of
the LLM “coming up” with its own abstract rules and thus creating a “rulebook”
(discussed in Section 6.1.2). Finally, few-shot (image, question, answer)-labeled
examples are often available in datasets typically used in machine learning. If
not available, they are cheap to obtain via crowd-sourcing and can be reused
for further studies as a benchmark.

6.1.4 Self-correction

One of the advantages of solving visual reasoning tasks with LLMs as program-
mers is that we know when code fails to execute. The failure can happen, e.g.
due to a compilation error (e.g. due to hallucination), some of the models fail-
ing, or a wrong return type (e.g. a bounding-box is expected, but code returns
a string). Note that to detect these types of errors, no ground-truth labels are
needed.

Self-debugging. If the code execution fails, we can query the code-generating
LLM to correct the previously generated code. We do this by feeding back the
query, the previously generated code, and the resulting error in the prompt (see

98 6.2 Experiments

the feedback template in Appendix D.3). Moreover, if the LLM’s sampling tem-
perature is higher than zero, we can query the model with a different random
seed to generate new code from scratch. There are advantages to both of these
approaches. If the code-generating LLM has good “self-correction” abilities, then
it should be able to correct its own mistakes based on the feedback, as we hu-
mans could. However, if the LLM is not good at self-correction or does not
know how to incorporate such feedback (e.g. if the LLM is not trained to be
conversational), then feeding back the previous query and code will only “bias”
the model to output the same solution. In that case, generating new code from
scratch could work better.

Self-tuning. In some cases, we know that code execution failed due to some
components of a particular module. For example, the open vocabulary detector
fails due to a too high threshold hyperparameter. When the threshold is high,
we have a higher number of false negatives. For such cases, we propose to auto-
matically change the hyperparameter of the module (e.g. reduce the threshold)
and execute code again.

6.2 Experiments

Tasks. We evaluate our method on four datasets: RefCOCO, RefCOCO+ [Yu
et al., 2016], GQA [Hudson and Manning, 2019] and NExT-QA [Xiao et al.,
2021] used in previous work [Surís et al., 2023]. These datasets evaluate a
diverse set of capabilities, namely visual grounding (RefCOCO, RefCOCO+),
compositional image question answering (GQA), and video temporal reasoning
(NExT-QA). In RefCOCO (example in Figure 6.1a), the task is to detect a bound-
ing box of an object given its natural language description (“referring expres-
sion”). In compositional question answering in GQA, the task is to answer in
natural language a compositional natural language query. We use the “test-dev”
split of the GQA dataset, as in ViperGPT. In NExT-QA, the task is to answer a
temporally compositional question by selecting one of the given multiple choice
options. As in ViperGPT, we use NExT-QA “hard” split [Buch et al., 2022]. For
RefCOCO and RefCOCO+, methods are evaluated in terms of Intersection over
Union (IoU) between the detected and the ground truth bounding box and for
GQA and NExT-QA in terms of accuracy of the predicted answer.

Vision and Language Models. For code generation, we use a code instruction-
tuned version of PaLM 2 [Anil et al., 2023] code-bison accessible via theGoogle

99 6.2 Experiments

Model RefCOCO (IoU) RefCOCO+ (IoU) GQA (acc.) NExT-QA (acc.)

Zero-Shot (ZS) SotA 53.0 57.5 44.7 38.3
Few-Shot (FS) SotA 53.3 52.5 35.7 38.3
Supervised (Sup) SotA 94.0 91.7 72.1 63.1

ViperGPT (paper) 72.0 67.0 48.1 60.0
ViperGPT (GitHub (GH) ZS) 46.7 - - -
ViperGPT (GH w/ DS-ICEs) 60.5 - - -

E2E bsl.(ZS OWLv2/PaLI-3) 33.5 31.7 40.1 58.9
E2E LLM-only baseline - - - 53.3

Ours (code-bison, Zero-Shot) 44.4 ± 0.9 38.2 ± 0.0 32.1 ± 0.4 60.2 ± 0.3
Ours (code-bison) 51.2 ± 0.2 45.7 ± 0.1 33.4 ± 0.2 61.0 ± 0.1

Table 6.1: Comparison of our method against previous end-to-end and “LLMs as
controllers” SotA methods. For “Ours (code-bison)”, we report mean scores ±
standard deviation across three random seeds. The reference numbers for SotA
on each dataset are taken from the following publications: RefCOCO: ZS [Yang
et al., 2023b], FS [Yao et al., 2021], Sup [Wang et al., 2022b]; RefCOCO+: ZS
[Yang et al., 2023b], FS [Yao et al., 2021], Sup [Wang et al., 2022b]; GQA: ZS
[Li et al., 2023], FS [Jin et al., 2021], Sup [Nguyen et al., 2022]; NExT-QA: ZS
[Chen et al., 2023b], FS [Chen et al., 2023b], Sup [Ye et al., 2023].

Cloud API [Google, 2023]. We use the same model to select an answer for
the multichoice questions in the NExT-QA dataset. Vision models we use are
OWLv2 [Minderer et al., 2023] for object detection, SigLiT [Zhai et al., 2023]
for text-image comparison, MiDaS [Ranftl et al., 2020] for depth estimation, and
PaLI-3 [Chen et al., 2023b] for image captioning and answering visual queries.
Note that all models are different from the models that ViperGPT used (see
Appendix D.2).

Baselines. Strong baselines are essential for correctly measuring progress in
machine learning. This is especially true in the emerging area of “tool use”
[Cobbe et al., 2021; Komeili et al., 2021; Thoppilan et al., 2022; Parisi et al.,
2022; Zeng et al., 2022; Gao et al., 2023; Qin et al., 2023; Zhuge et al., 2023].
When using an LLM and other pre-trained models, we must be careful to re-
port the exact LLM version and/or API when it was accessed, and ideally report
results over several random seeds to measure the statistical significance. In Ta-
ble 6.1, we provide an overview of the previous Zero-Shot (ZS), Few-Shot (FS),
and Supervised (Sup) SotA methods, ViperGPT, end-to-end (E2E) baselines, and
our results on all datasets we used for evaluation.

100 6.2 Experiments

Early in the project, we found it difficult to reproduce the results reported in
the ViperGPT paper. Our first hypothesis is that this is due to differences in the
vision and language models we use compared to the ViperGPT paper. However,
when running the original ViperGPT code from the official GitHub repository
on RefCOCO, we were only able to achieve an IoU of 60.5 as opposed to 72.0
reported in the paper. Note, however, that ViperGPT uses Codex, which is
discontinued, so we use GPT-3.5-turbo [OpenAI, 2023b]. Also note that this
score was obtained using 16 dataset-specific ICEs (DS-ICEs). These examples
contain large amounts of dataset-specific human-engineered information, such
as “clothing requires returning the person”. In the case of truly Zero-Shot learn-
ing (without any human-engineered ICEs), the IoU score of ViperGPT’s official
GitHub code drops by 14 points to 46.7. Moreover, in their GitHub code we
found hand-engineered improvements: if returning a bounding box fails, then
return an “average” bounding box, and if code execution fails on GQA, then
query the image captioner (BLIP-2 [Li et al., 2023]). These code changes lead
to improved results, but make it hard to quantify the true power of LLMs as
controllers approach.

In Table 6.1, we also provide Zero-Shot end-to-end baselines. On RefCOCO
and RefCOCO+, we feed the query as input to the OWLv2 model and return its
output. For the GQA end-to-end baseline, we query the PaLI-3 model (which
was fine-tuned for multi-task inference on different captioning and VQA data
sets, but not on GQA). For NExT-QA, we provide two baselines. For the first
baseline, we subsample and caption with PaLI-3 one frame per second, and then
feed all these captions to an LLM (code-bison) together with the question and
multiple choice answers. As the second baseline, we simply feed the LLM the
question and the possible answers and ask it to choose one. LLM-only baseline
achieves an accuracy of 53.3%, which is only 5.4% lower than the baseline that
also gets videos as input and significantly above the chance level accuracy of
20% (since there are 5 possible multichoice answers to each question). This sug-
gests that NExT-QA might not fully evaluate the vision properties of the model
and that new datasets are needed; for example, the Perception Test [Pătrăucean
et al., 2023] was created specifically to avoid such problems.

Lastly, in Table 6.1 we report the Zero-Shot performance in our setup, as well
as results for our best performing model variant (averaged over three random
seeds). In the following sections, we evaluate each component, as well as their
combinations, to obtain the reported results. Using GPT-3.5-turbo instead of
code-bison resulted in a slight drop in performance, but as we shall see below,
the same conclusions hold for both code-bison and GPT-3.5-turbo for all our
suggested improvements. In the following, we present the components of our

101 6.2 Experiments

ViperGPT Abstract
API

40

42

44

46

48

50

Io
U

RefCOCO

no ACE
w/ ACE

ViperGPT Abstract
API

34

36

38

40

42

44

Io
U

RefCOCO+

no ACE
w/ ACE

ViperGPT Abstract
API

26

28

30

32

34

36

Ac
cu

ra
cy

GQA

no ACE
w/ ACE

ViperGPT Abstract
API

30

40

50

60

Ac
cu

ra
cy

NExT-QA

no ACE
w/ ACE

Figure 6.2: Using our Abstract API improves performance over the ViperGPT
API across all datasets. Similarly, ACEs consistently improve performance, and
these gains compound with the gains from the Abstract API. Uncertainty bars
represent standard deviations computed over three random seeds.

framework. For an ablation study, see Table 6.2 that shows that each component
contributes positively to the final scores on each dataset.

6.2.1 Zero-Shot through spatially and temporally Abstract API

In Figure 6.2, we show the effect of using our Abstract API instead of the API
used in ViperGPT. The API for RefCOCO, RefCOCO+, and GQA uses the same
set of image routines (see Appendix D.4), whereas the API for NExT-QA uses
only video-specific (temporal) routines. For now, we focus on the brown bars
in Figure 6.2, and we compare the ViperGPT API and our Abstract API. We can
see that our Abstract API leads to gains both with and without ACEs across all
datasets. The performance gain is most notable for the NExT-QA dataset when
ACEs are not used. We suspect that this is due to the LLM’s difficulty in reasoning
about the temporal order of events. This confirms our hypothesis that building
a more abstract API such that the LLM does not need to use low-level Python
routines is a promising direction.

Finally, we investigate whether our conclusions also hold for other LLMs,
namely OpenAI’s GPT-3.5-turbo. On RefCOCO GPT-3.5-turbo achieves an
IoU of 28.9 with the ViperGPT API and 39.8 with our Abstract API and an
accuracy of 9.4 and 42.9 for the ViperGPT API and our Abstract API, respec-
tively, on NExT-QA. This confirms that our Abstract API brings gains not only
for code-bison, but also for other LLMs. For each sample in the evaluation, we
allow only one trial of code generation (no self-correction). Compared to the re-
sults with code-bison, IoU of 37.7 and 40.5 on RefCOCO and accuracy of 11.5
and 46.1 on NExT-QA for the ViperGPT API and our Abstract API, respectively,
the results with GPT-3.5-turbo are slightly worse. We suspect that the reason

102 6.2 Experiments

0 4 8 16
Number of ACEs

40

42

44

46

48

50

Io
U

RefCOCO

ViperGPT API
Abstract API

0 4 8 16
Number of ACEs

34

36

38

40

42

44

Io
U

RefCOCO+

ViperGPT API
Abstract API

0 4 8 16
Number of ACEs

29.5

30.0

30.5

31.0

31.5

32.0

32.5

Ac
cu

ra
cy

GQA

ViperGPT API
Abstract API

0 4 8 16
Number of ACEs

30

40

50

60

Ac
cu

ra
cy

NExT-QA

ViperGPT API
Abstract API

Figure 6.3: Increasing the number of ACEs in the prompt improves performance.
Note that using the ViperGPT API onNExT-QA results in only three correct ACEs,
so the performance plateaus after four ACEs.

for this could be that GPT-3.5-turbo is mainly built to be a conversational agent,
while code-bison is specifically trained to have good coding capabilities.

6.2.2 Few-shot boostrapping via automatically generated in-
context examples (ACEs)

We evaluate the effect of using automatically generated in-context examples
(ACEs), described in Section 6.1.3. We can either sample few-shot examples
manually or pick them at random. Both of these variants lead to good results,
as we show in the following experiments. However, selecting examples manu-
ally allows for a better “quality” (in terms of diversity) given a small number of
few-shot examples, so by default we use these for all experiments. For the first
set of experiments, we manually pick 16 few-shot examples from the training
set: image/video, question, and ground-truth answer. We try to make examples
diverse to cover question “types” (e.g. left-right, front-back, closest-to, etc.).

In Figure 6.2, we show the effect of ACEs. For each dataset and for each
API, the performance without ACEs is shown with the brown bar, and the per-
formance with ACEs corresponds to the blue bar. We can see that for all datasets
and all APIs, ACEs improve performance. The largest gains when using ACEs
are for RefCOCO, RefCOCO+, andNExT-QA datasets when using the ViperGPT
API. This indicates that ACEs are effective in dealing with complex spatial and
temporal reasoning. More importantly, it can be seen in Figure 6.2 that the gains
from both the Abstract API and ACEs compound for all tasks, indicating that they
provide complementary strengths. Figure 6.3 shows how the performance in
terms of IoU and accuracy scales with the number of few-shot examples used to
generate ACEs. As expected, increasing the number of few-shot examples leads
to improved performance. Note that the ViperGPT API on NExT-QA is able to

103 6.2 Experiments

correctly “solve” only 3 few-shot examples, so there are no gains beyond using
4 few-shot examples.

We evaluate the effect of using randomly sampled few-shot examples instead
of manually selecting them. On RefCOCO, we sample 100 few-shot random
samples from the training set, run Zero-Shot framework on them, sort the result-
ing programs by their IoU, and select the top 16 programs. Therefore, we end
up with the same number of ACEs as with manual selection. On RefCOCO,
we achieve IoU of 47.9 and 49.1 with the ViperGPT API and our Abstract API
respectively. These results are slightly better than those with manually selected
few-shot examples (46.9 and 48.2 IoU). This shows that the manual labor for
generating ACEs can be removed altogether if we already have some labeled ex-
amples. With 50 few-shot random samples we obtain similar performance, and
for 16 such samples we observe a small drop in performance (see Tables D.3
and D.4 in the Appendix D.1 for detailed results).

As in the previous section, we test whether our findings are consistent
with GPT-3.5-turbo on RefCOCO and NExT-QA. On RefCOCO, when using
GPT-3.5-turbo, ACEs improve IoU from 28.9 to 39.8 with the ViperGPT API
and from 38.1 to 41.6 with our Abstract API. Similarly, for GPT-3.5-turbo on
NExT-QA, ACEs improve accuracy from 9.4 to 42.9 the ViperGPT API and from
56.7 to 58.8 with our Abstract API. This confirms that the benefit of ACEs is not
only limited to code-bison but also holds for GPT-3.5-turbo as well.

Another benefit of the few-shot setup when generating ACE is that it allows
us to “tune” hyperparameters (HPs). For example, when sweeping over LLM
temperature and object detection threshold HPs, we observed that the relative
performances on the few-shot examples closely resemble the one when sweep-
ing over the full validation dataset (the analysis is shown in Appendix D.1).

6.2.3 Self-correction

In this section, we analyze the ability of the framework to “self-correct” itself
without any external feedback when code execution fails.

Self-debugging. When the program execution fails (due to e.g. compilation
errors), we can retry by generating a new program [Chen et al., 2021]. When
creating a new program, we can also feed the previously generated code and the
question as part of the prompt (see Appendix D.4), a variant that we call “self-
debugging”. Another option would be to simply repeat the exact same prompt
as in the previous trial and rely on stochasticity in the LLM with a tempera-

104 6.2 Experiments

1 2 3 4 5
Number of ACEs

38

40

42

44

46

48

50

52

Io
U

RefCOCO
Vip. API
Vip. API w/ ACE
Abs. API
Abs. API w/ ACE
Dyn.t=0.1
Dyn.t=0.15

1 2 3 4 5
Number of ACEs

32

34

36

38

40

42

44

46

Io
U

RefCOCO+

1 2 3 4 5
Number of ACEs

28

29

30

31

32

33

34

Ac
cu

ra
cy

GQA

1 2 3 4 5
Number of ACEs

10

20

30

40

50

60

Ac
cu

ra
cy

NExT-QA

Figure 6.4: Increasing the number of “self-tuning” steps leads to improved per-
formance. Our Abstract API (Abs. API) consistently outperforms the ViperGPT
API (Vip. API). The best performance is achieved when using dynamic object
detector threshold (Dyn.t) in addition to the Abstract API with ACE.

Model RefCOCO (IoU) RefCOCO+ (IoU) GQA (acc.) NExT-QA (acc.)

ViperGPT API 38.4 32.0 27.9 11.5
+ Abstract API 42.3 (+3.9) 34.0 (+2.0) 30.0 (+2.1) 57.6 (+46.1)
+ ACE 47.3 (+5.0) 41.7 (+7.7) 30.6 (+0.6) 60.7 (+3.1)
+ Self-debugging 48.2 (+0.9) 42.9 (+1.2) 32.4 (+1.8) 61.0 (+0.3)
+ Self-tuning 51.2 (+3.0) 45.7 (+2.8) 33.4 (+1.0) -

Table 6.2: Component-wise ablations of our framework. Each component con-
tributes positively to the final score. Their relative contributions vary for different
tasks. We report mean scores across three random seeds.

ture greater than zero to generate a new correct solution. In our experiments,
the “self-debugging” variant did not lead to an improvement in performance.
In all cases, the performance plateaus after the first trial. This is in line with
other recent findings [Huang et al., 2023; Stechly et al., 2023; Valmeekam et al.,
2023]. On the other hand, the variant without any feedback in the prompt led
to an increasingly better performance as the number of “trials” increases (see
Figure 6.4).

Self-tuning. In some cases, we know that code fails due to some specific mod-
ule. Therefore, we can then adjust the hyperparameters of the respective module
and re-run code. For example, the open vocabulary detector we used (OWLv2)
has a threshold hyperparameter that controls how sensitive it is. The lower this
threshold, the more false positives we will have, but also the fewer false nega-
tives. There is no global “optimal” value for this threshold that performs best for
all images. Our framework allows us to adjust this hyperparameter dynamically:
if the open vocabulary detector fails, we can lower the threshold and run the

105 6.2 Experiments

IoU[0.7, 1] IoU[0.3, 0.7) IoU(0, 0.3) IoU0 ErrObj. Det ErrRet. Type ErrOther

ViperGPT API

0

10

20

30

40

50
%

ViperGPT API
+ ACE
+ ACE + Dynamic Threshold

IoU[0.7, 1] IoU[0.3, 0.7) IoU(0, 0.3) IoU0 ErrObj. Det ErrRet. Type ErrOther

Abstract API

0

10

20

30

40

50

%

Abstract API
+ ACE
+ ACE + Dynamic Threshold

Figure 6.5: Error diagrams for the ViperGPT API and our Abstract API. We visual-
ize the percentages of samples with IoU in certain ranges. “Err” classes are sam-
ples for which code execution failed due to either: object detection (Obj.Det),
wrong return type (Ret.Type) or some other error (Other) e.g. hallucination.

visual program again. In Figure 6.4, we can see that variants with a dynamic
object detection threshold outperform all other variants and achieve the best
performance. Note that the variant that achieves the highest performance after
five trials has a lower performance for the first trial. This happens because we
start with a higher object detection threshold value of 0.15 (by default, we use
0.1). In this case, initially there will be more false negatives, but also fewer false
positives. As we decrease the threshold in subsequent trials, the previously false
negatives are detected and the queries are correctly answered.

6.2.4 Error analysis

Another benefit of visual reasoning with LLMs as programmers is interpretabil-
ity. For example, we can get insights into the percentage of successful program
executions, which can be further decomposed into the ones that resulted in cor-
rect or incorrect responses, and for the programs that failed to execute, we can
provide further insights into why they failed, i.e. which module failed to return
the correct result. Figure 6.5 shows one such error analysis on RefCOCO. Cate-
gories labeled with “Error” are the ones for which code failed to execute due to
either object detection (Obj.Det), wrong return type (Ret.Type) or some other
error (Other) e.g. hallucination. For all other cases, code executed correctly (it
returned a bounding box), but sometimes it failed to detect the object (“IoU = 0”
case). First, we notice that for both APIs the number of “correct” detections
(IoU higher than 0.7) grows as we include ACEs and “self-tuning” through the
dynamic object detection threshold. We can also see that the percentages of
samples with high IoU are always higher for our Abstract API compared to the
ViperGPT API. Finally, note that the percentage of error cases drops from 12.8%

106 6.3 Discussion and future work

to 4.8% for the ViperGPT API and from 9.1% to 3.8% for our Abstract API.

6.3 Discussion and future work

Although the LLMs as controllers framework is very promising for visual reason-
ing, there is much future work to be explored. First, the use of video-specific
models (or tools) could greatly improve performance on video tasks compared
to the image-specific models we used. Moreover, the code generating LLM cur-
rently only takes the question as the input, but for some questions the program
that correctly solves the question can only be generated given the image or video
as the input too.

The results with the Abstract API show that this is a promising path forward,
but more research is needed to find the “optimal” set of visual and temporal
routines. Starting from these primitive routines, the model should be able to
build an ever-growing library of routines (e.g. through the ACE generation pro-
cess) that it can later reuse. This growing library of routines will most likely
grow larger than the size of the context window, so research is needed on an
API “router” that can select routines that are relevant to a specific task at hand.
Furthermore, it would be important to research ways of eliminating the need for
few-shot examples when generating ACEs, e.g. by providing a natural language
dataset specification (a datasheet).

Lastly, more effort should be put into creating better benchmarks for eval-
uating compositional visual reasoning, as current ones have a number of lim-
itations. For example, not all samples in RefCOCO and RefCOCO+ require
compositional reasoning, so the LLM should only query the open-vocabulary
object detector. Similarly, many referring expressions in GQA are ambiguous
in the sense that there is not a single unique answer. Finally, NExT-QA contains
ambiguous questions (e.g. why someone did certain actions) or questions that
can be answered by looking at the multiple choice answers only and disregard-
ing the visual input altogether. The Perception Test [Pătrăucean et al., 2023] is
a promising benchmark for future work, as it was specifically created to avoid
such problems. We hope that our findings inform future research on LLMs as
controllers for visual reasoning and encourage systematic evaluation and bench-
marking efforts in the future.

107 6.4 Conclusion

6.4 Conclusion

In this work, we present a framework that makes LLMs as programmers for visual
reasoning more robust, removes the need for human engineering of in-context
examples (ICEs), and thus brings them a step closer to truly zero-shot visual rea-
soners. We introduce an “Abstract API” that consists of spatially and temporally
abstract routines, which improves performance by reducing the burden on the
code-generating LLM to have strong spatial and temporal reasoning. By using a
few labeled examples, we show how one can generate query-code ICEs automat-
ically (ACEs) in a zero-shot manner. When used as in-context examples, ACEs
consistently improve performance, eliminating the need for human engineer-
ing of ICEs. We demonstrate how LLMs as controllers for visual reasoning can
(to a certain extent) perform “self-correction” through “self-debugging” and “self-
tuning” without any ground-truth labels. In self-debugging, generating new code
from scratch led to consistently better results, but providing the previous query-
code pair as feedback to the LLM did not improve performance. In self-tuning,
we show that hyperparameters of certain modules can be tuned automatically if
code execution fails due to these modules. Across a number of compositional
question-answering and video temporal reasoning tasks, we demonstrate that
each component of our framework consistently leads to improvement.

108 6.4 Conclusion

Chapter 7

Conclusion and Future Work

This dissertation provides several contributions towards improving composi-
tional visual reasoning and generalization using neural networks. In our work,
we hypothesized that the current NNs suffer from the binding problem, and of-
fered three ways of going forward: learning an object- and relation-centric world
model, scaling NNs, and employing task decomposition through modular NNs,
e.g. by using a large language model (LLM) as a controller.

First, we argued for the importance of learning object-centric representations
from raw visual data. In this context, we introduced a method that improves the
reasoning and generalization abilities of a sequential slots model (Chapter 2).

We then argued for the importance of learning hierarchical object represen-
tations. In Chapter 3 we introduced a method that is capable of inferring nodes
and edges of a hierarchical graph directly from raw visual data. We showed
that our approach to physical reasoning models objects as hierarchies of parts
that may locally behave separately but also act more globally as a single whole,
which greatly improves physics reasoning capabilities on videos.

In Chapter 4 we argued that (hierarchical) decomposition into objects is gen-
erally task-dependent and that it is sometimes infeasible and undesirable to de-
compose a scene into all hierarchy levels. For these reasons, it might be more
beneficial to modulate objects with task information, such as words, actions, or
goals. In an RL setting, we first introduced a set of new environments that evalu-
ate out-of-distribution generalization, and showed that agents based on NNs that
learn distributed representations fail to generalize. We then introduced object-
centric agents and showed that they perform favorably and generalize better to
OOD environments.

Since slot-based methods have certain conceptual limitations, we then
(Chapter 5) studied an alternative way to unsupervised object discovery. In this

109

110

context, we introduced a synchrony-based method that can, for the first time,
discover objects in an unsupervised manner in multi-object color datasets and
simultaneously represent more than three objects.

Finally, in Chapter 6 we studied an alternative method to unsupervised
object-centric representation learning, namely one based on “tool use”. There,
we improved a framework for compositional visual reasoning with LLMs as con-
trollers by introducing spatially and temporally abstract routines and by lever-
aging a small number of labeled examples to automatically generate in-context
examples, thereby avoiding human-created in-context examples.

Limitations In each chapter of this thesis, we discuss limitations of our methods
and here we provide their summary.

In Chapter 2 we introduced R-SQAIR, a method that improves the reasoning
and generalization abilities of a sequential slots model. However, in its cur-
rent form, this method is limited to grayscale data, due to using SQAIR to infer
the objects from the images. A second limitation is that this method computes
all pairwise relations for every frame, which is often wasteful in the real-world
where the interactions occur infrequently.

In Chapter 3 we introduced HRI, a method that learns part-object hierarchi-
cal structure and their relations purely from raw visual data. A limitation of this
method is that it uses spatial slots to learn about parts and objects, which could
be addressed by using parallel or sequential slots. Another limitation is that it
relies on operations of the CNN to group parts into objects. This could be ad-
dressed by using a more flexible architecture with weaker inductive bias, such
as Transformers. Furthermore, we evaluated HRI only on a limited number of
real world datasets, so the question remains how it scales to other scenarios. Fi-
nally, HRI assumes that we can extract a fixed, static hierarchical representation
of the scene, whereas this is often infeasible and undesirable in the real world,
where the hierarchy level over which we operate should be task dependent.

In Chapter 4 we introduced new object-centric agents and showed that they
have better out-of-distribution generalization properties. A limitation of our ap-
proach is that it does not modulate object representations with neither actions
nor goals. Furthermore, the environment we used for benchmarking has fairly
low visual complexity and objects are well-defined. This raises questions about
the scalability of our method, mainly due to the scalability issues of object-
centric methods, which are not specific to the RL setup.

In Chapter 5 we showed how synchrony-based models can be scaled to color
images by using a contrastive objective. However, our method still only scales to

111

color scenes with low visual complexity. In particular, we found it to sometimes
struggle with objects that have specular highlights and similarly colored objects.
Another limitation of our work is that the contrastive objective can be compu-
tationally demanding, depending on the number of patches (resolution) over
which we contrast. Finally, inherits the general drawback of synchrony-based
methods, which is computationally more expensive inference, due to clustering
features to determine feature groupings into objects.

In Chapter 6 we introduced a framework for compositional visual reasoning
with LLMs as controllers that leverages abstract routines and a small number of
labeled examples to make LLMs-as-controllers setup more robust and reduce
the dependence on human engineering. Perhaps the biggest limitation of our
approach is that the code-generating LLM takes as input only the question and
a Python API, but not the visual input. However, some questions can only be
answered if we consider visual input as the context. For example, query “second
from the right” for an image of people would require us to first detect persons,
whereas if we are given an image of dogs, we would ask the object detector to
detect the dogs in the image. Finally, in our approach, we do not create a library
of already generated functions that can be reused later.

Outlook and future work Throughout this thesis, we hinted at many future
research directions, but here we provide three high-level research directions:
learning task-modulated object representations, scaling synchrony-based meth-
ods, and further improving the LLMs-as-controllers framework.

First, we believe that the most promising way to scale object-centric repre-
sentations to real-world datasets is to study the weakly supervised setup where
we are given a bag of words that represent objects or concepts in the scene, and
learn to ground these in pixels in an unsupervised manner.

Second, the synchrony-based method we introduced in this thesis is only ca-
pable of handling visually simple scenes and still lags behind slot-based meth-
ods. More research is needed to close this gap. One promising direction could
be investigating ways of making not only activations, but also weights to be
complex-valued.

Third, in the direction of LLMs as controllers for visual reasoning in video
tasks, it would be beneficial to use video-specific models. Furthermore, for
some questions, the “correct” visual program can only be generated if not only
the question is fed into the LLM but also the visual input. Future work should in-
vestigate this by turning the code-generating LLM into a VLM. Lastly, new ways
should be investigated to make the framework truly self-referential, both in cor-

112

recting its errors in generated code and in starting from the given primitive visual
routines and then building an ever-increasing “library” of visual routines.

Finally, it is an open research question whether gains would be obtained
by combining some of the three directions we proposed in this thesis: object-
centric inductive biases, scaling NNs, and reasoning with LLMs-as-controllers.
For example, in Chapter 6 we used exclusively pre-trained object detectors, but
it would be interesting to see how one could incorporate models that are trained
to discover objects in a completely unsupervised manner. In a way, only a part
of the binding problem in end-to-end models (e.g. compositional reasoning) is
circumvented by using LLMs-as-controllers, but the low-level question on how
to infer discrete representations from raw visual input still remains. Similarly,
the question remains on whether object-centric NNs can be scaled and what
their scaling laws are. Although there are some initial results on scaling object-
centric NNs [Elsayed et al., 2022], increasing their capacity is often in conflict
with the “bottleneck” principle based on which they are encouraged to learn
object representations. Therefore, the best way on how to make this trade-off
remains an open research question.

Publications during the PhD program

• Aleksandar Stanić and Jürgen Schmidhuber. R-SQAIR: Relational Sequen-
tial Attend, Infer, Repeat. NeurIPS PGR workshop, 2019. [Stanić and
Schmidhuber, 2019]

• Aleksandar Stanić, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Hi-
erarchical Relational Inference. Proceedings of the AAAI Conference on
Artificial Intelligence, 2021. [Stanić et al., 2021]

• Djordje Miladinovic, Aleksandar Stanić, Stefan Bauer, Jürgen Schmidhu-
ber and Joachim Buhmann. Spatial Dependency Networks: Neural Lay-
ers for Improved Generative Image Modeling. International Conference
on Learning Representations (ICLR) 2021. [Miladinović et al., 2021]

• Aleksandar Stanić, Yujin Tang, David Ha, and Jürgen Schmidhuber. Learn-
ing to generalize with object-centric agents in the open world survival
game crafter. IEEE Transactions on Games, pages 1–20, 2023. doi:
10.1109/TG.2023.3276849. [Stanić et al., 2023]

• Aleksandar Stanić, Anand Gopalakrishnan, Kazuki Irie, and Jürgen
Schmidhuber. Contrastive Training of Complex-valued Autoencoders for
Object Discovery. Neural Information Processing Systems (NeurIPS),
2023. [Stanić et al., 2023b]

• Aleksandar Stanić, Sergi Caelles, and Michael Tschannen. Towards Truly
Zero-shot Compositional Visual Reasoning with LLMs as Programmers.
Under submission. arXiv:2401.01974, 2024. [Stanić et al., 2024]

• Aleksandar Stanić, Dylan Ashley, Oleg Serikov, Louis Kirsch, Francesco
Faccio, Jürgen Schmidhuber, Thomas Hofmann, Imanol Schlag. The Lan-
guini Kitchen: Enabling Language Modelling Research at Different Scales
of Compute. Under submission. arXiv:2309.11197, 2023. [Stanić et al.,
2023a]

113

114

• Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R. Ashley, Robert
Csordas, Anand Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader
Hammoud, Vincent Herrmann, Kazuki Irie, Louis Kirsch, Bing Li, Guo-
hao Li, Shuming Liu, Jinjie Mai, Piotr Piękos, Aditya Ramesh, Imanol
Schlag, Weimin Shi, Aleksandar Stanić, Wenyi Wang, Yuhui Wang, Meng-
meng Xu, Deng-Ping Fan, Bernard Ghanem, Jürgen Schmidhuber. Mind-
storms in Natural Language-Based Societies of Mind. R0-FoMo: Work-
shop on Rubstness of Few-shot and Zero-shot Learning in Foundation Mod-
els, NeurIPS 2023. arXiv:2305.17066, 2023. [Zhuge et al., 2023]

Appendix A

Additional Details for Learning
Hierarchical Object Representations

In this section we decribe all datasets and the training procedure in detail. Addi-
tionally, we provide model architecture configurations for the HRI model, abla-
tion models, NRI and LSTM baselines. Reported results in the bar plots are the
mean and standard deviation obtained for each model using 5 different random
seeds.

A.1 Datasets

Four main datasets are used: state-springs, visual-springs (rendered version of
state-springs), and two real-world benchmark datasets: one obtained by render-
ing the joints of the Human3.6M dataset and the other using the raw videos of
the KTH dataset.

A.1.1 Springs

We simulate a system of moving objects connected via finite-length springs
starting from the open source simulator implementation of Kipf et al. [2018].
We make the following modifications: objects are connected via finite length
springs (instead of ideal springs) and the sampled graphs have a hierarchical
structure in terms of connectivity, initial spatial positions and the spring con-
stants (which reflects in the speed by which objects in different layers of the
hierarchy move). Objects are connected via finite springs, which makes them

115

116 A.1 Datasets

act according to a modified Hooke’s law:

Fij = −kF (ri − rj − l · ri − rj
|ri − rj|

), (A.1)

where ri and rj are (x, y)-coordinates of objects i and j, kF is the spring con-
stant and l is its length. The objects are connected in a hierarchical graph, and
they move inside a unit box (bounce elastically from the walls). To simulate the
system, we initialize the root node position randomly in a neighborhood around
the center of the image by sampling its (x, y) coordinates from N (0, 0.25). We
then initialize the intermediate and the leaf nodes randomly inside each of the
four image quadrants to ensure an initial bias towards spatial grouping. In partic-
ular, we sample from Gaussian distributions with variance 0.25 and the means
(for (x, y)-coordinates) being the centers of the four quadrants: (−0.25, 0.25),
(0.25, 0.25), (−0.25,−0.25) and (0.25,−0.25). For each sample in the dataset,
we sample a graph with random connectivity: we start from a full tree graph,
where sibling nodes are fully connected, then drop edges at random with a
probability of 0.5, but ensure that the resulting graph is connected. The spring
lengths are: 0.4 between the root and intermediate nodes, 0.1 between interme-
diate and leaf nodes, 0.65 within intermediate node siblings and 0.2 within leaf
node siblings. All springs have the same constant, except for springs between
leaf node siblings, which have a value that is half the value of other constants.
In total we generate a dataset of 5 · 105 training, 105 validation, and 105 test
sequences, each 50 frames (steps) long.

We note that all objects in the springs dataset are free to move anywhere
in the space, and not limited to a particular quadrant. The intermediate nodes
are only initialized with a bias towards quadrants, which was done to obtain
a scenario where the objects naturally group together from the beginning of
the sequence. This is identical to initializing all positions at random, and then
performing rollouts until the objects’ positions converge (which would always
happen due to the hierarchical forces that act between them).

A.1.2 Human3.6M

This dataset Ionescu et al. [2013] consists of 3.6 million 3D human poses, cor-
responding 2D pose projections and images. We use the provided 2D pose
projections to render 12 joints in total (3 of each limb). In total there are 11
professional actors in 17 scenarios, from which subjects number 1, 5, 6, 7, and
8 are used for training, and subjects number 9 and 11 for testing. This allows
us to create 10k training and 3.5k test sequences of 50 frames.

117 A.2 Training Details

A.1.3 KTH

The KTH Action dataset Schuldt et al. [2004] consists of real-world videos of
people performing one of six actions: walking, jogging, running, boxing, hand-
waving and hand-clapping. We trained all models on 64× 64 video sequences,
by conditioning on 10 frames and training the model to predict the next 10
frames in ten frames in the sequence, as done in previous work Denton and Fer-
gus [2018]. We split the dataset into a training dataset containing 8k sequences
and test dataset containing 1.5k test sequences, consisting of subjects not present
in the training dataset.

A.2 Training Details

All models are trained with Adam Kingma and Jimmy Ba [2015] using default
parameters and a learning rate of 5 · 10−4. We use a batch size of 32 and train
models for 100 epochs. On the visual task we train each model in two stages,
which acts as a curriculum: for the first 50 epochs we train the visual encoder
and decoder on a reconstruction task, afterwards we optimize the relational
module and dynamics parameters on the prediction task.

Optimizing only for the next step prediction task can lead to a predictor
which ignores the inferred relational graph (also noted in Kipf et al. [2018]). To
avoid this, in the feedforward case we predict 10 steps in the future by feeding
in predicted output as the next step input, and only feed the ground truth in-
put every 10 steps. In the recurrent case this might lead to instabilities, so we
introduce a “burn-in-phase”, where we feed the ground truth input at the be-
ginning, and predict the last 10 steps of the sequence. To train the models we
optimize for ELBO over such sequences, whereas we evaluate the models on the
next step prediction task. The Gaussian output distribution has a fixed variance
σ2 = 5 · 10−5.

We evaluate the models based on the negative log likelihood loss and the
“normalized” negative log likelihood (Figs. 3.3a and A.2), which is inversely
proportional to a version of HRI that operates on the ground-truth interaction
graph (HRI-GT) (higher value is better). The latter allows us to factor out the
complexity of the task and make it easier to compare results between tasks. We
average the negative log likelihood either over the number of objects (for the
state datasets) or pixels (for the visual datasets).

118 A.3 HRI Architecture Details

A.3 HRI Architecture Details

We describe every module in terms of blocks it consists of, e.g. node-to-edge
MLP, edge-to-node MLP, LSTM etc. The architectures in all tables represent
the forward pass, except for Table A.1, where for the first part (leaf object en-
coder) we have two variants (depending on whether we use SlotDec or ParDec),
whereas the hierarchy inference module is the same in both cases.

A high-level overview of the HRI model is presented in Fig. 3.2, with a high-
level summary of all components. Below we describe each component in detail.

Visual Encoder The visual encoder takes as input the concatenation of 32 ×
32× 3 RGB frame and a 32× 32× 2 (x, y)-fixed coordinate channels (as in Liu
et al. [2018]; Watters et al. [2019b], simplifying the object’s position inference
relative to the image frame), processes it with several convolutional layers with
ReLU non-linearities and batch norm Ioffe and Szegedy [2015] and outputs a
hierarchy of object representations. First it infers the 4 × 4 leaf objects (note
different variants for this part in Table A.1 depending on the decoder), from
which 4 intermediate nodes and 1 root node are inferred. This results in 16 leaf
objects, 4 intermediate objects, and one root object, each 48-dimensional. They
are all mapped with a FC layer (with shared weights) to 16-dimensional vectors
and fed through another (Object-wise VAE) FC layer (µ and σ for the standard
VAE reparametrization). For KTH experiments the input resolution is 64×64×1,
handled by repeating the first convolutional layer of the encoder.

Relational Inference Module The relational inference module takes a se-
quence of K = 10 object vectors (16-dimensional in visual and 4-dimensional
in state case) as input and outputs one-hot encoding (2-dimensional) of the pair-
wise relations e(i,j) (the outputs of the fo MLP inTable A.2). The samples are
drawn as rij = softmax((e(i,j) + g)/τ) where g is drawn from a Gumbel(0, 1)
distribution and τ = 0.5 is the temperature parameter.

Dynamics Predictor The dynamics predictor (Table A.3) takes as input in-
ferred object states of dimensionality d and the inferred pairwise edges, and
predicts the object states at the next time step via rounds of message passing. Hi-
erarchical message passing functions f bu

MP , f
ws
MP , and f td

MP perform a single node-
to-edge and edge-to-node message passing operation as in equation 3.1, where
their node-to-edge and edge-to-node MLPs all share the same set of weights.
The feedforward variant replaces LSTM with one layer (FC with 64 ReLU units)

119 A.4 Ablations

Leaf Object Encoder for SlotDec

8× 8 conv, 48 ReLU units, stride 8, batch norm

Leaf Object Encoder for ParDec

8× 8 conv, 48 ReLU units, max pool 2, batch norm
8× 8 conv, 48 ReLU units, max pool 2, batch norm
8× 8 conv, 48 ReLU units, max pool 2, batch norm

Hierarchical objects inference

2× 2 conv, 48 ReLU units, max pool 2, batch norm
2× 2 conv, 48 ReLU units, max pool 2, batch norm
Object-wise FC, 16 ReLU units.
Object-wise VAE FC, 2× 16 units (µ, σ).

Table A.1: Visual encoder architectures

that takes as input the concatenation of object at the current step and the effect
computed by the message passing.

Visual Decoder The visual decoder takes as input a set of N vectors (d =

16-dimensonal object states) and produces the output image according to the
architecture in Table A.4. For the SlotDec a unique float index i ∈ [0, 1] is
appended to each object state, which helps learning the visual object colors, as
they are decoded separately as a (permutation invariant) set and then summed.
Note that for the KTH experiments the image resolution is 64 × 64 × 1, which
is handled by simply adding another ‘4 × 4 convTranspose, 64 ReLU, stride
2’ layer to the decoder. In a similar way we add a convolutional layer to the
encoder and by doing this we are able to infer the same hierarchy regardless of
the input resolution. To account for additional visual complexity of predicting
As in Denton and Fergus [2018], we add skip connections between encoder and
decoder to enable the model to easily generate static background features, and
allow the dynamics predictor to focus on modelling the changes.

A.4 Ablations

Following are the ablation-specific configurations:

• HRI-GT: HRI model that gets ground truth graph as the input to the dy-

120 A.4 Ablations

Node-embeding MLP

Concatenate K object states in a slot-wise manner
FC, 64 ELU
FC, 64 ELU, batch norm

Concatenate object pairs slot-wise oij = [oi, oj]

Node-to-edge MLP fn2e

FC, 64 ELU
FC, 64 ELU, batch norm

Edge-to-node MLP fe2n

FC, 64 ELU
FC, 64 ELU, batch norm

Append slot-wise the skip connection of oij

Node-to-edge MLP (shared weights with fn2e)

FC, 64 ELU
FC, 64 ELU, batch norm

Output MLP fo

FC, 64 ELU
FC, 64 ELU, batch norm
FC, 2 output units

Table A.2: Relational inference module architectures

namics predictor (no relational inference).

• HRI-H: HRI model that performs relational inference on a smaller subset
of edges (other edges are excluded), by considering the convolutional and
pooling operations that infer the hierarchical object slots. Let o1 be the
root object, o2, o3, o4, o5 intermediate objects, and o6 − o21 leaf objects.
The subset of edges HRI-H considers are parent-child (and vice-versa child-
parent) (1−2, 1−3, 1−4, 1−5), (2−6, 2−7, 2−8, 2−9), (3−10, 3−11, 3−
12, 3−13), (4−14, 4−15, 4−16, 4−17) and (5−18, 5−19, 5−20, 5−21)

and all within-sibling edges.

• NRI-GT: NRI model that gets ground truth graph as the input to the dy-
namics predictor (no relational inference).

121 A.5 NRI Baseline

Bottom-up message passing round f bu
MP

(on child-parent edges)

Node-to-edge MLP fn2e
FC, 64 ReLU
FC, 64 ReLU, batch norm
Edge-to-node MLP fe2n
FC, 64 ReLU
FC, 64 ReLU, batch norm

Within-siblings message passing round fws
MP

(on sibling edges)
Shared weights of fn2e and fe2n MLPs with f bu

MP

Top-down message passing round f td
MP

(on parent-child edges)
Shared weights of fn2e and fe2n MLPs with f bu

MP

LSTM

LSTM, 64 hidden units

Output MLP fo

FC, 64 ReLU
FC, d output units.

Table A.3: Dynamics predictor architecture

• FCMP: NRI model that performs message passing in the dynamics predic-
tor on a fully connected graph (no relational inference).

Note also that the performance gain observed in our experiments is not
a consequence of an increased model capacity: in the case of visual springs
dataset HRI and the NRI baseline have the same number of parameters - 292’141,
whereas the LSTM baseline has more - 317’707.

A.5 NRI Baseline

To infer the object states on which NRI performs relational inference we use
the visual encoder and decoder of the HRI architecture. This ensures a fair
comparison between NRI and HRI in the visual setting. We emphasise that

122 A.6 LSTM Baseline

SlotDec

FC, 4× d ReLU
4× 4 convTranspose, 64 ReLU, stride 2
4× 4 convTranspose, 64 ReLU, stride 2
4× 4 convTranspose, 64 ReLU, stride 2
4× 4 convTranspose, 3 ReLU, stride 2

ParDec

4× 4 convTranspose, 64 ReLU, stride 2
4× 4 convTranspose, 64 ReLU, stride 2
4× 4 convTranspose, 3 ReLU, stride 2

Table A.4: Visual decoder architectures

standard NRI as presented in Kipf et al. [2018] did not support learning from
visual images.

The dynamics predictor (‘decoder’ in NRI Kipf et al. [2018]) is presented
in Table A.5, which uses an LSTM Hochreiter and Schmidhuber [1997] instead
of the GRU Cho et al. [2014] cell.

A.6 LSTM Baseline

Similarly to the NRI baseline, the LSTM baseline uses the same (pretrained) vi-
sual encoder and decoder to map from image to object states, and vice-versa.
We use an LSTM with 64 hidden units that concatenates representations from all
objects and predicts their future state jointly. Essentially, the NRI baseline dy-
namics predictor can be viewed as extending the LSTM by adding the message
passing part (functions fn2e and fe2n) based on the inferred interaction graph. In
contrast, the LSTM baseline only explicitly considers the nodes of the graph, but
not its edges (relations).

A.7 Additional Results

Below we provide additional results for the 3-3 state and visual dataset, the
results for datasets containing homogeneous (white) balls instead of colored
ones: 3-3-state-visual-white and 4-3-state-visual-white in Appendix A.9, present
the rollouts on visual spring datasets and Huma3.6M dataset in Appendix A.10,

123 A.8 State Springs

Node-to-edge MLP fn2e

FC, 64 ReLU
FC, 64 ReLU, batch norm

Edge-to-node MLP fe2n

FC, 64 ReLU
FC, 64 ReLU, batch norm

LSTM

LSTM, 64 hidden units

Output MLP fo

FC, 64 ReLU
FC, d output units.

Table A.5: NRI dynamics predictor

results on datasets containing objects of different shapes, sizes and occlusions in
Appendix A.11, and finally results on generalization (extrapolation) of models
trained on 4-3-visual-springs to 3-3-visual springs in Appendix A.12.

A.8 State Springs

Additional results in terms of the negative log likelihood are provided for the
4-3-state-springs dataset in Fig. A.2. By having the absolute, instead of the nor-
malized score, we can see how markedly big the gap between the recurrent
and the feedforward dynamics predictor is. Additionally, the results in Figs. A.1
and A.3 for the 3-3-state-springs show that same conclusions hold as for the 4-
3-state-springs, with the exception of Fig. A.1b where HRI and HRI-H perform
the same (for 4-3-state-springs HRI outperforms HRI-H, see Fig. 3.3b).

124 A.8 State Springs

Recurrent
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
NRI-lo
LSTM
LSTM-lo

(a)

Recurrent
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI-GT
HRI
HRI-H
NRI-GT
NRI
FCMP

(b)

2 3 4 5 6 7 8 9 10
Time steps

0.000

0.002

0.004

0.006

0.008

0.010

Pr
ed

ic
tio

n
M

SE

Recurrent

Model
NRI
HRI
FCMP
HRI-H
NRI-GT
HRI-GT
LSTM

(c)

Figure A.1: Performance on the 3-3-state-springs dataset. We compare HRI to
(a) baselines and (b) ablations in terms of the “normalized” negative log likeli-
hoodwhich is inversely proportional to HRI-GT, which receives the ground-truth
graph. In this case higher is better. (c) MSE when predicting into the future (pre-
diction rollouts).

Recurrent
0

500

1000

1500

2000

2500

3000

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI-GT
HRI
HRI-H
NRI-GT
NRI
FCMP

(a)

Feedforward
0

2500

5000

7500

10000

12500

15000

17500

20000

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI-GT
HRI
HRI-H
NRI-GT
NRI
FCMP

(b)

Figure A.2: Performance of HRI and ablation models on the 4-3-state-springs
dataset in terms of the negative log likelihood in both recurrent and feedforward
case. Note the difference in the ranges of y axis indicating the inability of the
feedforward model to learn accurate dynamics prediction.

125 A.8 State Springs

Recurrent
0

100

200

300

400

500

600

700

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI-GT
HRI
HRI-H
NRI-GT
NRI
FCMP

(a)

Feedforward
0

1000

2000

3000

4000

5000

6000

7000

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI-GT
HRI
HRI-H
NRI-GT
NRI
FCMP

(b)

Figure A.3: Performance of HRI and ablation models on the 3-3-state-springs
dataset in terms of the negative log likelihood in both recurrent and feedforward
case. Note the difference in the ranges of y axis indicating the inability of the
feedforward model to learn accurate dynamics prediction.

126A.9 Visual Springs - Different Number of Objects and Homogeneous Colors

A.9 Visual Springs - Different Number of Objects
and Homogeneous Colors

We provide additional results and visualizations for the 3-3-visual-springs and
additional two experiments that we performed with homogeneous (white) balls:
3-3-visual-springs-white and 4-3-visual-springs-white. The result in Fig. A.4 con-
firms that our model is able to handle different number of balls, by learning to
simply leave some slots empty (Fig. A.4a). Moreover, the results in Figs. A.5
and A.6 closely match the ones in Figs. 3.4 and A.4, thus showing that our
method does not rely on color to disentangle objects into separate slots.

(a)

SlotDec ParDec
0

10

20

30

40

50

60

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
FCMP
LSTM

(b)

Figure A.4: (a) HRI introspection: first column contains ground-truth, predicted
image and their difference. In the other 4 columns we visualize 16 object slots
decoded separately. (b) Negative log likelihood for all models on the 3-3-visual-
springs dataset.

A.10 Prediction Rollouts and Latent Interaction
Graph Inference

We provide additional results for the 4-3-visual-springs and Human3.6M dataset.
In particular, Fig. A.7 shows 10 time step prediction rollout of HRI model on 4-
3-visual springs dataset, where it can be seen that the predictions closely match
the ground truth sequence. The rollout sequence in Fig. A.8 shows similar per-
formance on the Human3.6M dataset. Inferred interaction graphs on 4-3-visual
springs by HRI (top row) and NRI (bottom row) are shown in Fig. A.9. The
first column shows the groundtruth graphs, and the graphs to follow in the next

127 A.10 Prediction Rollouts and Latent Interaction Graph Inference

(a)

SlotDec ParDec
0

5

10

15

20

25

30

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
FCMP
LSTM

(b)

Figure A.5: (a) HRI introspection: first column contains ground-truth, predicted
image and their difference. In the other 4 columns we visualize 16 object slots
decoded separately. (b) Negative log likelihood for all models on 3-3-visual-
springs-white.

(a)

SlotDec ParDec
0

10

20

30

40

50

60

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
FCMP
LSTM

(b)

Figure A.6: (a) HRI introspection: first column contains ground-truth, predicted
image and their difference. In the other 4 columns we visualize 16 object slots
decoded separately. (b) Negative log likelihood for all models on 4-3-visual-
springs-white.

columns correspond to graphs inferred by models in different sequence steps.
The graph inferred by HRI resembles the ground-truth much more closely com-
pared to NRI.

128 A.10 Prediction Rollouts and Latent Interaction Graph Inference

Figure A.7: Ground truth (top) and predicted (bottom) 10 time steps rollout of
HRI on 4-3-visual-springs.

Figure A.8: Ground truth (top) and predicted (bottom) 10 time steps rollout of
HRI on Human3.6M.

129 A.10 Prediction Rollouts and Latent Interaction Graph Inference

Figure A.9: Inferred interaction graphs on 4-3-visual-springs by HRI (top row)
andNRI (bottom row). In the first column are groundtruth graphs, and the graphs
to follow in subsequent columns correspond to graphs inferred by the respective
model over the video sequence frames.

130 A.11 Visual Springs - Diverse Datasets

A.11 Visual Springs - Diverse Datasets

In this section we provide results on 5 additional datasets: Triangles, Squares,
Diverse-Objects (contains balls, triangles and squares of various sizes), Large-
Objects, and Curtain. Samples of a frame from each of these datasets are
shown in Fig. A.10. Qualitative introspection and quantitative performance
in Figs. A.11 to A.15 show that HRI is able to handle datasets containing dif-
ferent object shapes, sizes, and also handle occlusions, while outperforming
all considered baselines in all cases. Curtain dataset is created form 4-3-visual-
springs dataset by inserting a 12× 12 pixels curtain at random position in each
video sequence.

(a) (b) (c) (d) (e)

Figure A.10: Samples from: (a) Triangles, (b) Squares, (c) Diverse-Objects, (d)
Large-Objects, and (e) Curtain datasets.

(a)

SlotDec ParDec
0

50

100

150

200

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
FCMP
LSTM

(b)

Figure A.11: (a) HRI introspection: first column contains ground-truth, predic-
tion and their difference. The other columns show the 16 object slots decoded
separately. (b) Negative log likelihood for all models on the Triangles dataset.

131 A.11 Visual Springs - Diverse Datasets

(a)

SlotDec ParDec
0

50

100

150

200

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
FCMP
LSTM

(b)

Figure A.12: (a) HRI introspection: first column contains ground-truth, predic-
tion and their difference. The other columns show the 16 object slots decoded
separately. (b) Negative log likelihood for all models on the Squares dataset.

(a)

SlotDec ParDec
0

50

100

150

200

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
FCMP
LSTM

(b)

Figure A.13: (a) HRI introspection: first column contains ground-truth, predic-
tion and their difference. The other columns show the 16 object slots decoded
separately. (b) Negative log likelihood for all models on the Diverse-objects
dataset.

132 A.11 Visual Springs - Diverse Datasets

(a)

SlotDec ParDec
0

50

100

150

200

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
FCMP
LSTM

(b)

Figure A.14: (a) HRI introspection: first column contains ground-truth, predic-
tion and their difference. The other columns show the 16 object slots decoded
separately. (b) Negative log likelihood for all models on the Large-Objects
dataset.

(a)

SlotDec ParDec
0

20

40

60

80

100

120

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
FCMP
LSTM

(b)

Figure A.15: (a) HRI introspection: first column contains ground-truth, predic-
tion and their difference. The other columns show the 16 object slots decoded
separately. (b) Negative log likelihood for all models on the Curtain dataset.

133 A.12 Visual Springs - Generalization to Different Number of Objects

A.12 Visual Springs - Generalization to Different
Number of Objects

We test whether HRI is able to generalize to scenarios with different number
of objects by first training on 4-3-visual-springs and then testing on 3-3-visual
springs. The qualitative results are shown in Fig. A.16a, where it can be seen that
HRI is able to infer separate object representations even on a dataset it was not
originally trained on. Quantitative comparison of model performance is shown
in Fig. A.16b. Compared to Fig. A.4b we observe a slight drop in performance,
but HRI remains the best performing model. A prediction sequence is shown
in Fig. A.17. Note how HRI makes minor mistakes in the first few frames, but
adapts afterwards to the setting with different number of objects from what it was
trained on, and models the dynamics more accurately in subsequent frames.

(a)

SlotDec ParDec
0

20

40

60

80

N
eg

at
iv

e
Lo

g
Li

ke
lih

oo
d

Model
HRI
NRI
FCMP
LSTM

(b)

Figure A.16: (a) HRI introspection: first column contains ground-truth, predic-
tion and their difference. The other columns show the 16 object slots decoded
separately. (b) Negative log likelihood for all models on trained on 4-3-visual-
springs and evaluated on 3-3-visual-springs dataset.

Figure A.17: Ground truth (top) and predicted (bottom) 10 time steps rollout of
HRI trained on 4-3-visual springs and evaluated on 3-3-visual-springs.

134 A.12 Visual Springs - Generalization to Different Number of Objects

Appendix B

Additional Details for Learning to
Generalize with Object-centric
Agents

B.1 OOD environment Objects

Player Plant Cow Zombie Skeleton Arrow

Water Sand Grass Tree Path Stone

Coal Iron Diamond Lava Table Furnace

Figure B.1: Original Crafter objects. Figure from Hafner [2021].

135

136 B.2 Network Configurations

TreeV1 CowV1 ZombieV1 StoneV1 CoalV1 SkeletonV1

TreeV2 CowV2 ZombieV2 StoneV2 CoalV2 SkeletonV2

TreeV3 CowV3 ZombieV3 StoneV3 CoalV3 SkeletonV3

TreeV4 CowV4 ZombieV4 StoneV4 CoalV4 SkeletonV4

Figure B.2: In CrafterOODapp there are four variants of objects for trees, cows,
zombies, stone coal and skeletons.

B.2 Network Configurations

137 B.2 Network Configurations

Feature Extractor

8× 8 conv, 32 ReLU units, stride 4

4× 4 conv, 64 ReLU units, stride 2

3× 3 conv, 64 ReLU units, stride 1

Flatten
Linear, 512 ReLU units.

Action Network

Linear, 17 units.

Value Network

Linear, 1 units.

Table B.1: PPO-CNN: baseline agent with the CNN from DQN Mnih et al.
[2015].

Feature Extractor

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

Flatten
Linear, 512 ReLU units.

Action Network

Linear, 17 units.

Value Network

Linear, 1 units.

Table B.2: PPO-SPCNN: agent with the size-preserving CNN.

138 B.2 Network Configurations

Feature Extractor

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

Split into 8× 8 patches and flatten the patch grid

Self-Attention Network

Learned CLS token of 256 size.
Slot-wise projection: Linear, 256 units.
// Self-Attention layer 1:
Query map: Linear, 256 units.
Key map: Linear, 256 units.
Values map: Linear, 256 units.
// Self-Attention layer 2:
Query map: Linear, 256 units.
Key map: Linear, 256 units.
Values map: Linear, 256 units.

Action Network

Linear, 17 units.

Value Network

Linear, 1 units.

Table B.3: OC-SA: agent with the self-attention module.

139 B.2 Network Configurations

Feature Extractor

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

Split into 16× 16 patches and flatten the patch grid

Self-Attention Network

Learned slots 8× 256 size.
Query map: Linear, 256 units.
Key map: Linear, 256 units.
Values map: Linear, 256 units.

Action Network

Linear, 17 units.

Value Network

Linear, 1 units.

Table B.4: OC-CA: agent with the cross-attention module.

140 B.2 Network Configurations

Feature Extractor

8× 8 conv, 32 ReLU units, stride 4

4× 4 conv, 64 ReLU units, stride 2

3× 3 conv, 64 ReLU units, stride 1

Flatten
Linear, 512 ReLU units.

Action Network

LSTM, 256 units.
Linear, 17 units.

Value Network

LSTM, 256 units.
Linear, 1 units.

Table B.5: LSTM-CNN: recurrent agent with an LSTM and a CNN from
DQN Mnih et al. [2015].

Feature Extractor

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

5× 5 conv, 64 ReLU units, stride 1, padding 2

Flatten
Linear, 512 ReLU units.

Action Network

LSTM, 256 units.
Linear, 17 units.

Value Network

Linear, 256 units.
Linear, 1 units.

Table B.6: LSTM-SPCNN: recurrent agent with an LSTM and a size-preserving
CNN.

141 B.3 Object-centric agents formal details

B.3 Object-centric agents formal details

In this section we provide a mathematical description of our object-centric agent
implementations.

B.3.1 Object-centric Self-Attention (OC-SA) agents

OC-SA agent rely on simple Multi-Head Self-Attention mechanism Vaswani et al.
[2017]. Formally, the inputs to the attention mechanism are N image patches
(mapped through convolution layers) {xi}Ni=1 ∈ Rdin of dimension din. We treat
the input patches as a set of vectors, and add one additional CLS ∈ Rdin to-
ken Devlin et al. [2018], that is fed to the policy network after computing the
attention with all other vectors from the {xi}Ni=1 set. Therefore, the input to the
self-attention is the set of vectors (x1, .., xN , CLS) ∈ RN×din . From each input
vector, a query, key and value vectors are computed, using projection matrices
WQ,WK ,W V . Query, key and value vectors are all of the same dimensionality
d, resulting in aggregated Q ∈ R(N+1)×d, K ∈ R(N+1)×d, V ∈ R(N+1)×d matri-
ces. We compute dot products of each query is computed with all the keys and
scaled by

√
d. We then use softmax over the query dimension to obtain the

attention weights over the value vectors. Formally, scaled dot-product attention
is computed as:

Attention(Q,K, V) = softmax
(QKT

√
d

)
V. (B.1)

In practice, we use multi-head self-attention variant Vaswani et al. [2017], which
allows the model to compute different mappings in each head and aggregate it
in the end. Formally, multi-head self-attention is defined as:

MultiHeadSelfAttention(Q,K, V) = Concat(AttentionHead1, .., AttentionHeadh),

(B.2)
where h is the number of heads and

AttentionHeadi = Attention(QWQ
i , KWK

i , V W V
i), (B.3)

where the projection matrices WQ
i ∈ Rd×dmodel , WK

i ∈ Rd×dmodel , W V
i ∈

Rd×dmodel , where dmodel = d/h.

B.3.2 Object-centric Cross-Attention (OC-CA) agents

OC-CA agents are similar in spirit to cross-Attention (e.g. Jaegle et al. [2021b])
and slot-attention (e.g. Locatello et al. [2020]) models. Similarly to self-attention

142 B.3 Object-centric agents formal details

Algorithm 2: Modified slot-attention algorithm sketch (modified from
Locatello et al. [2020]). The input is a set ofNinputs vectors of dimension
d which is mapped to a set of Nslots slots of dimension d. We initialize
the slots by sampling their initial values as independent samples from
a Gaussian distribution with shared, learnable parameters µ ∈ Rd and
σ ∈ Rd.

1: Input: inputs ∈ RNinputs×d, slots ∼ N (µ, diag(σ)) ∈ RNslots×d

2: Layer params: k, q, v: linear projections for attention; Optional: MLP and
LayerNorm (x3)

3: inputs = LayerNorm (inputs) ▷ # optional LayerNorm
4: slots = LayerNorm (slots) ▷ # optional LayerNorm
5: attn = softmax 1√

d
k(inputs) · q(slots)T , axis=`slots/queries'

6:

slot_updates = WeightedMean (weights=attn + ϵ, values=v(inputs))
7: slots += MLP (LayerNorm (slot_updates)) ▷ # optional residual MLP

(per slot)
8: return slots

keys and the values in slot-/cross-attention are also computed from the input
which in our case are N image patches (mapped through convolution layers)
{xi}Ni=1 ∈ Rd of dimension d. However, unlike in self-attention, in cross-
attention the queries come from a separate set of learned vectors called slots.
In essence, this module maps from a set of Ninputs to a set of Nslots. Intuitively,
each slot can learn to describe an object or an entity in the input.

A sketch of the Slot-Attention algorithm is shown in Algorithm 2 and a sketch
of the Cross-Attention algorithm is shown in Algorithm 3. The main difference
between slot- and cross-attention is that in the slot-attention softmax is normal-
ized over slots (queries) dimension, and in the cross-attention softmax is normal-
ized over keys (as in standard self-attention). It is argued Locatello et al. [2020]
that softmax normalization over slots (queries) ensures that the attention coeffi-
cients sum to one for each individual input feature vector, which prevents the
attention mechanism from ignoring parts of the input. In our work OC-CA uses
the cross-attention mechanism. We do however experiment with slot-attention
too (OC-CA + Slot Competition entry in Table 4.8). Note also the optional Lay-
erNorm and residual MLP steps in both algorithms (these were also ablated in
Table 4.8).

Lastly, note the differences of our ‘modified’ slot-attention with respect to the
original slot-attention algorithm Locatello et al. [2020]. Firstly, we don’t use a

143 B.3 Object-centric agents formal details

recurrent network to combine the new updates with the previous slots. More im-
portantly, we also do not use multiple iterations of the attention. Therefore, our
algorithm can be understood as a single iteration of the original slot-attention
and without a recurrent network. We experimented with both using multiple
iterations as well as the recurrent network, but we observed suboptimal perfor-
mance.

Algorithm 3: Cross-Attention algorithm sketch (modified from Lo-
catello et al. [2020]). The input is a set of Ninputs vectors of dimension
d which is mapped to a set of Nslots slots of dimension d. We initialize
the slots by sampling their initial values as independent samples from
a Gaussian distribution with shared, learnable parameters µ ∈ Rd and
σ ∈ Rd.

1: Input: inputs ∈ RNinputs×d, slots ∼ N (µ, diag(σ)) ∈ RNslots×d

2: Layer params: k, q, v: linear projections for attention; Optional: MLP and
LayerNorm (x3)

3: inputs = LayerNorm (inputs) ▷ # optional LayerNorm
4: slots = LayerNorm (slots) ▷ # optional LayerNorm
5: attn = softmax 1√

d
k(inputs) · q(slots)T , axis=`keys'

6: slot_updates = attn · v(inputs)
7: slots += MLP (LayerNorm (slot_updates)) ▷ # optional residual MLP

(per slot)
8: return slots

More formally, in slot-/cross-attention slots are initialized at random by sam-
pling them from a Gaussian distribution, which allows them to generalize to
different number of slots at test time. The slots play the role of ‘queries’ in
the attention mechanism and can ‘bind’ to specific features by computing the
dot-product with keys and attending to values (both coming from the input).
Dot-product is computed as:

S =
1√
d
k(inputs) · q(slots)T ∈ RNinputs×Nslots . (B.4)

The main difference between slot- and cross-attention lies in how the softmax
is normalized. In slot-attention, we normalize over slots (queries):

attni,j =
eMi,j∑
i

eMi,j
, (B.5)

144 B.4 Off-policy algorithms on Crafter

and in cross-attention we normalize over keys:

attni,j =
eMi,j∑
j

eMi,j
. (B.6)

Slot updates in cross-attention are then computed as a weighted sum between
attention coefficients and the values:

slot_updates = attnT · v(inputs), (B.7)

whereas the slot-attention computes the weighted mean:

slot_updates = attn_meanT · v(inputs), (B.8)

where attn_meani,j =
attni,j

N∑
i=1

attni,j

.

Authors in the original slot-attention paper Locatello et al. [2020] argue that
the weighted mean helps improve stability of the attention mechanism. Lastly
note also that both slot- and cross-attention are permutation invariant with re-
spect to the input (the output is independent of permutations applied to the
input) and permutation equivariant with respect to the slots (output is permuted
in the same way as the order of the slots is permuted). For the proof we refer to
the slot-attention paper Locatello et al. [2020].

B.4 Off-policy algorithms on Crafter

We trained and evaluated an off-policy (DQN) agent on the original Crafter
environment. After extensive grid search over all hyperparameters, we were
unable to get good performance. The highest score we obtained was 4.5 (in
the original Crafter paper a score of 4.3 was reported for Rainbow). Qualitative
inspection of the agent’s behavior when the score is 4.5 showed that the agent
is not learning any meaningful behavior, but simply roams randomly around the
map and obtains a few points if it drinks water, sleeps, picks a tree or kills an
enemy.

Reasons for why the off-policy methods perform worse than on-policy ones
are unclear, but we can speculate on a few things that could work in favor of
on-policy algorithms. In general, on-policy learning can be better when training
an agent that needs to perform a significant amount of exploration, as is the case
for Crafter. Another reason could be that PPO is a policy gradient method, so as

145 B.5 CrafterOODapp performance

long as the learned policy is somewhat good, the value functions need not be
very accurate. On the other hand DQN needs to learn a correct value function
from which it then samples actions. If learning the value function is too hard to
do (as it may be the case in Crafter), then the DQN will be at a disadvantage
compared to the PPO.

B.5 CrafterOODapp performance

In Fig. B.3 we provide heatmap of the CrafterOODapp scores previously re-
ported in Table 4.4.

PPO-CNN
PPO-SPCNN

RecPPO-CNN

RecPPO-SPCNN
PPO-SA

PPO-CA

Agents

train: 100,0,0,0

IID eval: 100,0,0,0

train: 25,25,25,25

OOD eval: 0,33,33,33

train: 52,16,16,16

OOD eval: 0,33,33,33

train: 76,8,8,8

OOD eval: 0,33,33,33

train: 88,4,4,4

OOD eval: 0,33,33,33

train: 94,2,2,2

OOD eval: 0,33,33,33

train: 97,1,1,1

OOD eval: 0,33,33,33

train: 100,0,0,0

OOD eval: 0,33,33,33

En
vi

ro
nm

en
ts

10.4 11.4 10.5 12.3 11 10.1

10.3 11.6 10.4 12.1 11.1 10

9.2 10.7 10.7 11.5 9.7 9.9

9.2 11 11 11.6 9.7 9.2

9.9 11.1 11.5 11.1 9.6 9.4

10 11.2 11.4 11 10.6 9.9

9.9 11.5 10.7 11.6 9.8 11.3

9.2 10.5 10.4 10.7 9.2 10.5

10.1 12.2 11.5 11.3 10.5 11.2

9.1 10.2 10.1 9.8 9.4 9.4

10.9 12 11.4 11.7 10.5 10.8

8.6 9.2 9.1 9.8 9.9 8.8

10.5 11.8 11.9 12 10.3 10.8

7.3 7.7 8.2 8.8 9.3 8.8

10.5 11.8 10.7 11.9 11.1 10.7

7.3 7.7 5.8 6.8 8 7.6

CrafterOODapp score

6

7

8

9

10

11

12

Figure B.3: Scores on CrafterOODnum for agents trained for 1M environment
steps. Mean over 10 random seeds are reported. For standard deviations see Ta-
ble 4.4. Each setting has two rows, denoting scores in training (e.g. 25, 25, 25, 25
for O1−4 : 25%) and evaluation (0, 33, 33, 33, for O1 : 0%, O2−4 : 33.3%) environ-
ments.

146 B.6 CrafterOODnum performance

B.6 CrafterOODnum performance

In Fig. B.4 we provide heatmap of the CrafterOODnum scores previously re-
ported in Table 4.6.

PPO-CNN
PPO-SPCNN

LSTM-CNN
LSTM-SPCNN OC-SA OC-CA

Agents

train: easy (x2)

eval: default

train: easy (x4)

eval: default

train: mix (x4)

eval: default

train: default

eval: mix (x4)

train: default

eval: easy (x2)

train: default

eval: easy (x4)

train: easy (x2)

eval: hard (x2)

train: easy (x4)

eval: hard (x4)

train: average

eval: average

En
vi

ro
nm

en
ts

12.4 13.7 14.2 13.3 15 13.7

10.4 12.1 11.5 11.4 13 11.7

13.1 14.5 15.1 15 18.6 13.7

8.8 9.8 9.1 9.8 12.8 8.8

13.4 13.9 13 14.7 15.5 14.7

9.2 10.2 9 10.5 10.6 9.4

10.2 11.5 10.7 12.1 11.3 10.2

11.2 12.3 11.6 12.2 12.6 10.3

10.3 11.2 10.9 12 11.1 9.9

10.9 13.7 12.8 12.9 11.4 10.1

10.3 11.2 10.6 11.8 11.5 10.1

11.3 12.5 12.8 11.9 12.9 9.9

11.7 13.3 13.7 13.4 15.4 12.8

8 8.1 7.6 9.2 10.5 7.1

14.6 15.4 15.5 15.3 17.8 15.2

3 3.3 3 3.4 4.9 4.2

12 13.1 13 13.4 14.5 12.6

9.1 10.2 9.7 9.1 11.1 8.9

CrafterOODnum score

4

6

8

10

12

14

16

18

Figure B.4: Scores on CrafterOODapp for agents trained for 1M environment
steps. Mean over 10 random seeds are reported. For standard deviations see
Table 4.6. Each setting has two rows, denoting scores in training and evaluation
environments.

B.7 Hyper-parameter heatmaps

In Figs. B.5 and B.6 we show the pairwise heatmaps of the hyper-parameters
we tuned for the PPO-CNN. Important to note here is that once we tuned the
hyper-parameters for PPO-CNN, we fixed them and used the same values for all

147 B.7 Hyper-parameter heatmaps

other models. Therefore, other models might have a slight disadvantage as we
did not specifically tune hyper-parameters for each model.

In Fig. B.5 we start from the default hyper-parameters from Raffin et al. [2021]
that were tuned for Atari: GAE lambda 0.95, number of epochs 10, gamma 0.99,
batch size 64 and number of steps 1024. From here, we sweep over individual
pairs of hyper-parameters, e.g. GAE lambda and the number of epochs. Look-
ing at the heatmaps, it is clear how each hyper-parameters contributes to the im-
provement (which becomes evident by looking at their combination in Fig. B.6).
However, some hyper-parameters contribute much more than others, e.g. GAE
lambda and the number of epochs the agent is trained on the collected rollouts.
Given these plots, we settled on the following values for hyper-parameters: num-
ber of steps 4096, number of epochs 4, batch size 128, GAE lambda 0.65, and
gamma 0.95. GAE-lambda can be interpreted as an extra discount factor ap-
plied after performing reward shaping transformation on the MDP Schulman
et al. [2015], and we found low values to perform better. This also makes sense
given that we found lower discount factors also to give better performance (0.95
compared to the most commonly used 0.99). On the other hand, we extended
the horizon (number of rollout steps collected for the update) from default 1024
to 4096) and similarly increased batch size from 64 to 128, stabilizing train-
ing agents in Crafter. In general, when there are frequent rewards within an
episode, the number of steps can be smaller. However, in Crafter, the rewards
are sparse, which is also reflected in empirically better performance when using
longer rollouts.

In Fig. B.5we start from the best hyper-parameters we found: number of steps
4096, number of epochs 4, batch size 128, GAE lambda 0.65 and gamma 0.95.
We then ablate pairs of hyper-parameters by changing them over their respective
ranges. The agents are fairly robust to hyper-parameters changes. From the
heatmaps, we can see that the performance drops going away from the optimal
values, though not by a significant value.

148 B.7 Hyper-parameter heatmaps

3 4 6 10
Number of epochs

0.
5

0.
65

0.
75

0.
85

0.
95

G
A

E
 la

m
bd

a
9.5 9.6 9.5 7.7

9.5 9.6 8.9 7.6

9.7 9.9 8.3 6.6

9.9 9 7.2 6

7.9 6.7 5.1 4.4 5

6

7

8

9

10

0.8 0.9 0.95 0.99
Gamma

0.
5

0.
65

0.
75

0.
85

0.
95

G
A

E
 la

m
bd

a

7.1 7.7 7.8 7.7

6.7 7.3 7.8 7.6

6.3 6.7 7.3 6.6

5.7 5.8 5.9 6

5.2 4.9 4.7 4.4 5

6

7

8

9

10

64 128 256
Batch size

0.
5

0.
65

0.
75

0.
85

0.
95

G
A

E
 la

m
bd

a

7.7 8.5 8.5

7.6 8 8.9

6.6 7.2 8.4

6.1 6.4 7.2

4.4 4.6 5 5

6

7

8

9

10

1024 2048 4096 8192 16384
Number of steps

0.
5

0.
65

0.
75

0.
85

0.
95

G
A

E
 la

m
bd

a

7.6 7.7 7.8 7.6 6.6

7.1 7.6 7.3 7.1 6.7

6.4 6.6 6.6 6.3 5.9

5.6 6.1 6.2 5.7 5.5

4.4 4.4 4.5 4.6 4.4 5

6

7

8

9

10

0.8 0.9 0.95 0.99
Gamma

3
4

6
10

N
um

be
r
of

 e
po

ch
s

8.5 8.7 8.4 8

7.9 7.6 7.4 6.8

6.2 5.9 5.7 5.2

5.2 4.9 4.7 4.4 5

6

7

8

9

10

64 128 256
Batch size

3
4

6
10

N
um

be
r
of

 e
po

ch
s

8 7.8 7

6.8 8.2 7.5

5.2 5.8 7.7

4.4 4.6 5 5

6

7

8

9

10

1024 2048 4096 8192 16384
Number of steps

3
4

6
10

N
um

be
r
of

 e
po

ch
s

7.4 8 8.2 8.2 7.3

6.2 6.8 7.1 6.4 6.2

4.9 5.2 5.2 5 4.8

4.4 4.4 4.5 4.5 4.4 5

6

7

8

9

10

64 128 256
Batch size

0.
8

0.
9

0.
95

0.
99

G
am

m
a

5.2 5.9 6.8

4.9 5.6 6.3

4.7 5.2 5.9

4.4 4.6 5.1 5

6

7

8

9

10

Figure B.5: Crafter scores starting from the default hyper-parameters from Raffin
et al. [2021] that were tuned for Atari: GAE lambda 0.95, number of epochs
10, gamma 0.99, batch size 64 and number of steps 1024, and then ablating
individual hyper-parameter pairs. For each pair of hyper-parameters, the default
values are marked by a blue circle.

149 B.7 Hyper-parameter heatmaps

3 4 6 10
Number of epochs

0.
5

0.
65

0.
75

0.
85

0.
95

G
A

E
 la

m
bd

a
9.1 9.9 9.8 7.9

9.2 10.3 10.1 7.4

9.3 9.6 9.5 6.7

9.3 9.1 8.1 5.9

8 8 5.8 4.5 5

6

7

8

9

10

0.8 0.9 0.95 0.99
Gamma

0.
5

0.
65

0.
75

0.
85

0.
95

G
A

E
 la

m
bd

a

9.1 9.2 9.9 9.1

8.7 9.8 10.3 9.4

8.8 9.4 9.6 9.4

9.1 8.9 9.2 8.9

8.1 7.9 8 6.9 5

6

7

8

9

10

64 128 256
Batch size

0.
5

0.
65

0.
75

0.
85

0.
95

G
A

E
 la

m
bd

a

9.9 9.9 8.9

10.3 10.3 9

9.6 9.6 9.5

8.1 9.2 9.1

7.2 8.4 7.8 5

6

7

8

9

10

1024 2048 4096 8192 16384
Number of steps

0.
5

0.
65

0.
75

0.
85

0.
95

G
A

E
 la

m
bd

a

7.9 8.8 9.9 9.7 9.4

8.5 9 10.3 9.7 9

8.4 9.1 9.6 9.1 9

7.7 8.4 9.2 8.7 8.4

5.8 7.7 8.4 8.2 7.9 5

6

7

8

9

10

0.8 0.9 0.95 0.99
Gamma

3
4

6
10

N
um

be
r
of

 e
po

ch
s

8.1 8.7 9.2 9.1

8.8 9.8 10.3 9.7

9.3 8.7 10.1 9.5

6.7 7.8 7.4 7.6 5

6

7

8

9

10

64 128 256
Batch size

3
4

6
10

N
um

be
r
of

 e
po

ch
s

9.7 9.2 8.2

9.1 10.3 9

8.1 10.1 9.9

6.7 7.4 8.8 5

6

7

8

9

10

1024 2048 4096 8192 16384
Number of steps

3
4

6
10

N
um

be
r
of

 e
po

ch
s

7.3 8.3 9.2 8.9 8.9

8.5 9 10.3 10.1 9.2

8.3 9.3 10.1 10 9.2

7.5 7.9 7.4 7.1 6.9 5

6

7

8

9

10

64 128 256
Batch size

0.
8

0.
9

0.
95

0.
99

G
am

m
a

9.4 8.8 7.9

9.5 9.8 8.9

9.7 10.3 9

9.6 9.7 8.4 5

6

7

8

9

10

Figure B.6: Crafter scores starting from the best hyper-parameters we found:
GAE lambda 0.65, number of epochs 4, gamma 0.95, batch size 128 and num-
ber of steps 4096, and then ablating individual hyper-parameter pairs. For each
pair of hyper-parameters, the best values are marked by a blue circle.

150 B.7 Hyper-parameter heatmaps

Appendix C

Additional Details for
Synchrony-based Object Discovery
with Complex-Valued Autoencoders

C.1 Experimental Details

Datasets. We evaluate all models (i.e., CAE, CAE++ and CtCAE) on a sub-
set of Multi-Object dataset Kabra et al. [2019] suite. We use three datasets:
Tetrominoes which consists of colored tetris blocks on a black background,
dSprites with colored sprites of various shapes like heart, square, oval, etc.,
on a grayscale background, and lastly, CLEVR, a dataset from a synthetic 3D en-
vironment. For CLEVR, we use the filtered version [Emami et al., 2021] which
consists of images containing less than seven objects sometimes referred to as
CLEVR6 as in Locatello et al. [2020]. We normalize all input RGB images to have
pixel values in the range [0, 1] consistent with prior work [Löwe et al., 2022].

Models. Table C.1 shows the architecture specifications such as number of lay-
ers, kernel sizes, stride lengths, number of filter channels, normalization layers,
activations, etc., for the convolutional neural networks used by the Encoder and
Decoder modules in CAE, CAE++ and CtCAE.

Training Details. Table C.2 and Table C.3 show the hyperparameter configu-
rations used to train CAE/CAE++ and to contrastively train the CtCAE model(s)
respectively.

151

152 C.1 Experimental Details

Encoder

3 × 3 conv, 128 channels, stride 2, ReLU, BatchNorm
3 × 3 conv, 128 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 2, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 2, ReLU, BatchNorm

————————————————
For 64×64 and 96×96 inputs, 2 additional encoder layers:
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 2, ReLU, BatchNorm

Linear Layer

Flatten
Linear, 256 ReLU units, LayerNorm

Decoder

For 64×64 and 96×96 inputs, 2 additional decoder layers:
Bilinear upsample x2
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm

————————————————
Bilinear upsample x2
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
Bilinear upsample x2
3 × 3 conv, 256 channels, stride 1, ReLU, BatchNorm
3 × 3 conv, 128 channels, stride 1, ReLU, BatchNorm
Bilinear upsample x2
3 × 3 conv, 128 channels, stride 1, ReLU, BatchNorm

Output Layer (CAE only)

1 × 1 conv, 3 channels, stride 1, sigmoid

Table C.1: Encoder and Decoder architecture specifications for CAE, CAE++
and CtCAE models.

Computational Efficiency. We report the training and inference time (wall-
clock) for our models across the various image resolutions of the 3 multi-object

153 C.1 Experimental Details

Hyperparameter Tetrominoes dSprites CLEVR

Training Steps 50’000 100’000 100’000
Batch size 64 64 64
Learning rate 4e-4 4e-4 4e-4

Table C.2: General training hyperparameters.

Common Hyperparameters

Loss coefficient (in total loss sum) 1e-4
Temperature 0.05
Contrastive Learning Addresses Magnitude
Contrastive Learning Features Phase

Encoder Hyperparameters 32x32 64x64 96x96

Number of anchors 4 4 8
Number of positive pairs 1 1 1
Top-K to select positive pairs from 1 1 1
Number of negative pairs 2 2 16
Bottom-M to select negative pairs from 2 2 24

Decoder Hyperparameters 32x32 64x64 96x96

Patch Size 1 2 3
Number of anchors 100 100 100
Number of positive pairs 1 1 1
Top-K to select positive pairs from 5 5 5
Number of negative pairs 100 100 100
Bottom-M to select negative pairs from 500 500 500

Table C.3: Contrastive learning hyperparameters for the CtCAE model.

datasets. First, we find that inference time(s) is similar for all models, and it only
depends on the image resolution and number of ground truth clusters in the
input image. Inference for the test set containing 320 images of 32x32 resolu-
tion takes 25 seconds, for 64x64 images it takes 65 seconds and for the 96x96
images it takes 105 seconds. Training time(s) on the other hand differs both
across models and image resolutions. We report all training time(s) using a sin-

154 C.2 Additional results

gle Nvidia V100 GPU. CAE and CAE++ have similar training times: for 32x32
images training for 100k steps takes 3.2 hours, for 64x64 images it takes 4.8
hours, and for 96x96 images it takes 7 hours. CtCAE on the other hand takes 5
hours, 9.2 hours and 10.2 hours to train on dataset of 32x32, 64x64 and 96x96
images respectively. To reproduce all the results/tables (mean and std-dev across
5 seeds) reported in this work we estimate the compute requirement to be 840
GPU hours in total. Further, we estimate that the total compute used in this
project is approximately 5-10x more, including experiments with preliminary
prototypes.

Object Assignments from Phase Maps. We describe the process of extracting
discrete-valued object assignments from continuous-valued phase components
of decoder outputs y ∈ Ch×w×3. First, the phase components of decoder outputs
are mapped onto a unit circle and those phase values are masked out whose
magnitudes are below the threshold value of 0.1. After this normalization and
filtering step, the resultant phase values are converted from polar to Cartesian
form on a per-channel basis. Finally, we apply K-means clustering where the
number of clusters K parameter is retrieved from the ground-truth segmentation
mask for each image. This extraction methodology of object assignments from
output phase maps is consistent with Löwe et al. [2022].

Dataset Model Threshold=0.1 Threshold=0.0 No threshold
ARI-FG ↑ ARI-FULL ↑ ARI-FG ↑ ARI-FULL ↑ ARI-FG ↑ ARI-FULL ↑

Tetrominoes CAE++ 0.78 ± 0.07 0.84 ± 0.01 0.77 ± 0.07 0.79 ± 0.02 0.54 ± 0.09 0.21 ± 0.05

CtCAE 0.84 ± 0.09 0.85 ± 0.01 0.86 ± 0.05 0.82 ± 0.01 0.67 ± 0.11 0.26 ± 0.09

dSprites CAE++ 0.38 ± 0.05 0.49 ± 0.15 0.38 ± 0.05 0.49 ± 0.12 0.37 ± 0.05 0.49 ± 0.12

CtCAE 0.48 ± 0.03 0.68 ± 0.13 0.46 ± 0.07 0.69 ± 0.10 0.47 ± 0.06 0.69 ± 0.10

CLEVR CAE++ 0.22 ± 0.10 0.30 ± 0.18 0.33 ± 0.04 0.32 ± 0.25 0.34 ± 0.04 0.32 ± 0.25

CtCAE 0.50 ± 0.05 0.69 ± 0.25 0.52 ± 0.05 0.69 ± 0.20 0.52 ± 0.06 0.72 ± 0.21

Table C.4: Grouping results for CAE++and CtCAEmodels with different thresh-
old values applied to post-process the continuous output phase maps.

C.2 Additional results

We show some additional experimental results: generalization capabilities of Ct-
CAE w.r.t. the number of objects, and ablation studies on various design choices
made in CAE++ and CtCAE models.

155 C.2 Additional results

Evaluation ARI-FG ↑ ARI-FULL ↑

Training Subset: 4 or less objects

3 objects 0.39 ± 0.20 0.53 ± 0.30

4 objects 0.41 ± 0.18 0.55 ± 0.29

5 objects 0.38 ± 0.15 0.54 ± 0.28

6 objects 0.38 ± 0.13 0.55 ± 0.24

All images 0.39 ± 0.04 0.54 ± 0.28

Training Subset: 5 or less objects

3 objects 0.49 ± 0.04 0.69 ± 0.25

4 objects 0.50 ± 0.03 0.66 ± 0.24

5 objects 0.46 ± 0.02 0.65 ± 0.24

6 objects 0.45 ± 0.03 0.64 ± 0.23

All images 0.48 ± 0.02 0.66 ± 0.24

Table C.5: Generalization evaluation on the CLEVR dataset. Training only on a
subset, but evaluating on all possible subsets containing images with 3, 4, 5 or
6 objects.

C.2.1 Generalization to Higher Number of Objects

Here we evaluate generalization capabilities of CtCAE by training only on a
subset of images containing less than a certain number of objects, on CLEVR.
We have two cases—training on subsets with either up to 4 or up to 5 objects
while the original trainig split contain between 3 and 6 objects. The results
in Table C.5 show that CtCAE generalizes well. The performance drops only
marginally when trained on up to 4 objects and tested on 5 and 6 objects, or
when trained on up to 5 objects and tested on 6 objects. We also observe
that training on 5 or less objects also consistently improves ARI scores for every
subset of less than 5 objects. We suspect that the reason for this, apart from
having more training data, is that the network has more pressure to separate
objects in the phase space when observing more objects, which in turn also
helps for images with a smaller number of objects.

156 C.2 Additional results

Dataset Model ARI-FG ↑ ARI-FULL ↑

Tetrominoes CAE 0.00 ± 0.00 0.12 ± 0.02

CAE-(fout 1x1 conv) 0.00 ± 0.00 0.00 ± 0.00

CAE-(fout sigmoid) 0.12 ± 0.12 0.35 ± 0.36

CAE-transp.+upsamp. 0.10 ± 0.21 0.10 ± 0.22

CAE++ (above combined) 0.78 ± 0.07 0.84 ± 0.01

CtCAE 0.84 ± 0.09 0.85 ± 0.01

dSprites CAE 0.02 ± 0.00 0.07 ± 0.01

CAE-(fout 1x1 conv) 0.06 ± 0.01 0.07 ± 0.07

CAE-(fout sigmoid) 0.02 ± 0.01 0.07 ± 0.01

CAE-transp.+upsamp. 0.19 ± 0.02 0.10 ± 0.04

CAE++ (above combined) 0.38 ± 0.05 0.49 ± 0.15

CtCAE 0.48 ± 0.03 0.68 ± 0.13

CLEVR CAE 0.09 ± 0.05 0.08 ± 0.06

CAE-(fout 1x1 conv) 0.05 ± 0.01 0.06 ± 0.01

CAE-(fout sigmoid) 0.06 ± 0.02 0.01 ± 0.02

CAE-transp.+upsamp. 0.19 ± 0.07 0.10 ± 0.11

CAE++ (above combined) 0.22 ± 0.10 0.30 ± 0.18

CtCAE 0.50 ± 0.05 0.69 ± 0.25

Table C.6: Grouping metrics achieved by various model variants from our pro-
posed architectural modifications and resulting finally in the CAE++ model.
Extends the results of Table 5.4 to all 3 multi-object datasets.

C.2.2 Architecture Modifications

Table C.6 shows the results from the ablation study that measures the effect
of applying each of our proposed architectural modifications cumulatively to
finally result in the CAE++ model. Across all datasets, we consistently observe
that, starting from the vanilla CAE baseline which completely fails, grouping
performance gradually improves as more components of the CAE++ model is
added. Lastly, our proposed contrastive objective used to train CtCAE further
improves CAE++ across all 3 datasets.

157 C.2 Additional results

C.2.3 Contrastive Learning Ablations

Table C.7 shows an ablation study for the choice of layer(s) to which we apply
our contrastive learning method. Please note that all variants here always use
magnitude components of complex-valued activations as addresses and phase
components as features to contrast. We observe that the variant which ap-
plies the contrastive objective to both the outputs of the encoder and decoder
(‘enc+dec’) outperforms the others which apply it only to either one (‘enc-only’
or ‘dec-only’). This behavior is consistent across Tetrominoes, dSprites and
CLEVR. We hypothesize that this is because these two contrastive strategies are
complementary: one is on low-level cues (decoder) and the other one based on
high-level abstract features (encoder).

Table C.8 shows an ablation study for the choice of using magnitude or phase
as addresses (and the other one as features) in our contrastive learning method.
As we apply contrastive learning to both the decoder and encoder outputs, we
can make this decision independently for each output (resulting in four possible
combinations). We observe that the variant which uses magnitude for both the
encoder and decoder (‘mg+mg’) outperforms other variants across all 3 multi-
object datasets. These ablations support our initial intuitions when designing
our contrastive objective.

Dataset Model ARI-FG ↑ ARI-FULL ↑

Tetrominoes CtCAE (enc-only) 0.81 ± 0.06 0.85 ± 0.01

CtCAE (dec-only) 0.74 ± 0.04 0.86 ± 0.00

CtCAE (enc+dec) 0.84 ± 0.09 0.85 ± 0.01

dSprites CtCAE (enc-only) 0.40 ± 0.06 0.58 ± 0.05

CtCAE (dec-only) 0.48 ± 0.05 0.72 ± 0.07

CtCAE (enc+dec) 0.48 ± 0.03 0.68 ± 0.13

CLEVR CtCAE (enc-only) 0.21 ± 0.11 0.29 ± 0.15

CtCAE (dec-only) 0.38 ± 0.17 0.69 ± 0.18

CtCAE (enc+dec) 0.50 ± 0.05 0.69 ± 0.25

Table C.7: Grouping metrics achieved by CtCAE model variants that apply the
contrastive loss on output features from only the encoder (enc-only) or only the
decoder (dec-only) or both (enc+dec) for all 3 multi-object datasets. Extends
the results of Table 5.5 to all 3 multi-object datasets.

158 C.3 Additional Visualizations

Dataset Model ARI-FG ↑ ARI-FULL ↑

Tetrominoes CtCAE w/ mg+mg 0.84 ± 0.09 0.85 ± 0.01

CtCAE w/ ph+ph 0.85 ± 0.05 0.84 ± 0.01

CtCAE w/ mg+ph 0.86 ± 0.03 0.85 ± 0.02

CtCAE w/ ph+mg 0.77 ± 0.04 0.85 ± 0.01

dSprites CtCAE w/ mg+mg 0.48 ± 0.03 0.68 ± 0.13

CtCAE w/ ph+ph 0.38 ± 0.08 0.42 ± 0.16

CtCAE w/ mg+ph 0.36 ± 0.07 0.57 ± 0.13

CtCAE w/ ph+mg 0.45 ± 0.05 0.67 ± 0.18

CLEVR CtCAE w/ mg+mg 0.50 ± 0.05 0.69 ± 0.25

CtCAE w/ ph+ph 0.22 ± 0.06 0.22 ± 0.09

CtCAE w/ mg+ph 0.18 ± 0.08 0.28 ± 0.15

CtCAE w/ ph+mg 0.40 ± 0.15 0.65 ± 0.19

Table C.8: Grouping metrics on all 3 multi-object datasets achieved by Ct-
CAE model variants that use either magnitude or phase components of the en-
coder/decoder outputs as the addresses for contrastive learning. For example,
‘mg+ph’ means that magnitude components used as addresses of the encoder
outputs and phase components used as addresses of the decoder outputs (con-
versely, the phase components of the encoder outputs are used as features and
the magnitude components of the decoder outputs are used as features).

C.3 Additional Visualizations

We show additional visualization samples of groupings from CAE, CAE++ and
CtCAE on Tetrominoes, dSprites and CLEVR, and qualitatively highlight both
grouping failures and successes of CAE, CAE++ and CtCAE.

159 C.3 Additional Visualizations

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure C.1: Visualizations for CAE (row 1), CAE++ (row 2) and CtCAE (row
3) on the Tetrominoes dataset example from Figure 5.3. We see that CtCAE
achieves near perfect grouping (column 4) and better separability in phase space
(column 5) compared to our improved CAE++ variant which shows significant
grouping interference (parts of all three objects modelled by same group, e.g.,
orange cluster). We also observe that the baseline CAE completely fails to re-
construct or group the image.

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure C.2: Visualizations for CAE (row 1), CAE++ (row 2) and CtCAE (row
3) on the dSprites dataset example from Figure 5.3. We see that CtCAE suc-
cessfully separates the 4 scene objects into 4 clusters while CAE++ mistakenly
groups 2 scene objects into 1 cluster, i.e., the blue cluster (column 4). Again,
the baseline CAE fails to reconstruct (no color) or group the image.

160 C.3 Additional Visualizations

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure C.3: Visualizations for CAE (row 1), CAE++ (row 2) and CtCAE (row 3)
on the CLEVR dataset example from Figure 5.3. We see that the CtCAE in this
example is able to separate the 4 scene objects into 4 distinct clusters while
our improved CAE++ fails (column 4). This good separation in phase space
is reflected in the continuous phase maps (column 6) where the pixel colors in
the phase maps are representative of their values/differences when comparing
CtCAE and CAE++. Finally, we see that although the CAE is able to reasonably
reconstruct the image it shows very poor grouping of the scene objects.

161 C.3 Additional Visualizations

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure C.4: Visualization on grouping performance for CAE, CAE++ and CtCAE
on images containing same colored objects on Tetrominoes. CAE struggles to
even reconstruct the images, whereas CAE++ often groups objects with the
same colour together. CtCAE on the other hand has no problem separating
objects of the same colour on Tetrominoes.

162 C.3 Additional Visualizations

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure C.5: Visualization on grouping performance for CAE, CAE++ and CtCAE
on Tetrominoes. CtCAE shows a larger spread in phase values for different
clusters (column 5) compared to CAE. We hypothesize that this facilitates CtCAE
to perform better grouping in the scenario of multiple object instances with the
same color.

163 C.3 Additional Visualizations

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure C.6: Visualization on grouping performance for CAE, CAE++ and CtCAE
on images containing similar colored objects on dSprites. CAE has very poor
grouping capability, whereas CAE++ often groups objects with the same colour
together For example, purple ellipse and square in the first example (top panel)
or red and brown hearts grouped together in the last example (bottom panel) are
grouped together. CtCAE on the other hand has significantly better performance,
grouping correctly objects with the same (or similar) colors, except in the first
example (top panel) where it groups the pink square and ellipse together.

164 C.3 Additional Visualizations

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure C.7: Performance for CAE, CAE++ and CtCAE on images containing
many objects on dSprites. CAE shows poor grouping performance, as noted
previously. CtCAE has no issues grouping up to 5 objects in the same image,
whereas CAE++ struggles, often grouping multiple objects (typically of same
or similar colors) together into the same cluster.

165 C.3 Additional Visualizations

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure C.8: Visualization on grouping performance for CAE, CAE++ and Ct-
CAE on CLEVR dataset. We are particularly interested in the phase space spread
(column 5) here. CAE has a very large spread in phase values (column 5), but al-
most random object discovery performance, often grouping all objects together.
But if we see the actual phase values assigned to objects (column 6), we observe
that CAE tends to assign very similar phase values (e.g. all object phases’ are
in shades of magenta seen in column 6, rows 1, 4, and 7) to regions belong-
ing to different objects whereas the corresponding maps show better separation
in CAE++ and much superior in CtCAE. This explains better grouping perfor-
mance (column 4) shown by CAE++ and CtCAE over the vanilla CAE.

166 C.3 Additional Visualizations

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure C.9: Visualization on grouping performance for CAE, CAE++ and CtCAE
on samples with 4, 5 and 6 objects from the CLEVR dataset. CAE consistently
shows poor object discovery, often grouping all objects together. CAE++ im-
proves grouping substantially over the CAE baseline, but also struggles in certain
scenarios. For example, in the scene with 4 objects it groups two different ob-
jects together, whereas for scenes with 5 and 6 objects on two samples here
we see that it wrongly groups two objects together. CtCAE improves on these
grouping failures of CAE++. CtCAE correctly discovers all objects in the scene
with 4 and 5 objects, even though it makes an error grouping two objects to-
gether in the hardest example scene containing 6 objects.

167 C.3 Additional Visualizations

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

C
A
E

C
A
E
+
+

C
tC
A
E

Input Recon. GT Mask Mask Phase Rad. Phase Magnitude

Figure C.10: One of the limitations (failure modes) we observe is that in some
images containing many objects, with some of them having the same (or similar)
colors, our CtCAE model groups two such objects into the same cluster. Even
in this example, CtCAE still clearly outperforms CAE++, which in turn outper-
forms the CAE baseline.

168 C.3 Additional Visualizations

Appendix D

Additional Details for Compositional
Visual Reasoning with LLMs as
Programmers

D.1 Ablations

Here we present hyperparameter ablations, namely over the code-generating
LLM (code-bison) temperature and the open-vocabulary object detector
(OWLv2) threshold.

Model LLM temp. RefCOCO (IoU) RefCOCO+ (IoU) NExT-QA (acc.)

ViperGPT API 0.0 41.4 ± 0.3 39.8 ± 0.0 36.0 ± 0.1

0.4 46.9 ± 0.8 41.7 ± 0.4 53.1 ± 0.1

0.8 46.9 ± 0.3 42.0 ± 0.7 53.2 ± 0.1

1.0 46.2 ± 0.7 40.9 ± 0.6 50.3 ± 0.5

Abstract API 0.0 47.0 ± 0.1 41.9 ± 0.3 59.1 ± 0.0

0.4 48.2 ± 0.1 44.7 ± 0.2 61.0 ± 0.4

0.8 48.2 ± 0.0 43.0 ± 0.2 60.6 ± 0.6

1.0 48.8 ± 0.1 42.8 ± 0.3 59.9 ± 0.7

Table D.1: Code-generating LLM (code-bison) temperature hyperparameter ab-
lations (with ACEs). The scores are reported as mean± standard deviation across
three random seeds.

In Table D.1, we report the scores for different code-bison LLM tempera-

169

170 D.1 Ablations

tures: 0, 0.4, 0.8 and 1.0. We found the deterministic case to underperform
compared to the cases with a temperature higher than zero. This indicates that
the solutions of which the models are most “confident” of are not necessarily
always correct. On the other hand, when the temperature is too high, the model
starts to hallucinate functions that do not exist in the API and the performance
degrades. Early in our work, we settled on the code-bison LLM temperature of
0.4 and did not tune it further.

Model OWLv2 thrs. RefCOCO (IoU) RefCOCO+ (IoU)

ViperGPT API
0.05 42.6 ± 0.3 41.9 ± 0.3

0.10 46.9 ± 0.8 41.7 ± 0.4

0.15 45.0 ± 0.5 38.2 ± 0.2

0.20 33.3 ± 0.6 29.8 ± 0.2

Abstract API
0.05 42.8 ± 0.3 42.7 ± 0.7

0.10 48.2 ± 0.1 44.7 ± 0.2

0.15 47.1 ± 0.2 38.6 ± 0.1

0.20 33.7 ± 0.4 30.1 ± 0.4

Table D.2: Open-vocabulary object detector (OWLv2) threshold hyperparame-
ter ablations. The scores are reported as mean± standard deviation across three
random seeds.

Table D.2 shows the effect of using different thresholds for OWLv2 open vo-
cabulary detector. This threshold controls the level of ‘sensitivity’ of the open
vocabulary detector. If the threshold value is set too high, we will have fewer
false positives, but also more false negatives. We perform this study on Ref-
COCO and RefCOCO+. On both datasets, the threshold of 0.1 achieves the
best results, so by default we use this threshold in all our experiments.

In Table D.3 and Table D.4 we show results for RefCOCO and RefCOCO+
when using randomly sampled samples for the generation of ACEs. For compar-
ison purposes, in the tables we also provide scores when not using any ACEs
and with the default setting when generating ACEs with 16 manually selected
few-shot examples. From the tables, we can see that randomly selected 100 or
50 samples perform similarly as when using 16 manual samples. With 16 ran-
dom samples we observe a small drop in performance, though we still observe
an improvement compared to the setting without any ACEs. In summary, this
shows that the manual labor for generating ACEs can be removed altogether if

171 D.1 Ablations

API w/o ACE 16 manual 100 random 50 random 16 random

ViperGPT 41.7 ± 0.6 46.9 ± 0.8 47.9 ± 0.2 45.8 ± 0.4 41.5 ± 0.2

Abstract 44.4 ± 0.9 48.2 ± 0.1 49.1 ± 0.2 49.0 ± 0.2 46.9 ± 0.2

Table D.3: Results on RefCOCO with randomly sampled few-shot samples for
generating ACEs. Shown are IoU scores for zero-shot (w/o ACE) setting, with the
default setting that we used throughout the paper (16 manually sampled few-
shot samples from the dataset (16 manual)) and with 100, 50 and 16 randomly-
sampled samples (100, 50 and 16 random) from the dataset. The IoU scores are
reported as mean ± standard deviation across three random seeds.

API w/o ACE 16 manual 100 random 50 random 16 random

ViperGPT 36.7 ± 0.4 41.7 ± 0.4 41.3 ± 0.1 40.3 ± 0.3 36.3 ± 0.1

Abstract 38.2 ± 0.0 42.9 ± 0.2 42.8 ± 0.6 41.8 ± 0.0 40.2 ± 0.4

Table D.4: Results on RefCOCO+ with randomly sampled few-shot samples for
generating ACEs. Shown are IoU scores for zero-shot (w/o ACE) setting, with the
default setting that we used throughout the paper (16 manually sampled few-
shot samples from the dataset (16 manual)) and with 100, 50 and 16 randomly-
sampled samples (100, 50 and 16 random) from the dataset. The IoU scores are
reported as mean ± standard deviation across three random seeds.

we already have some labeled examples.

172 D.2 Pretrained models

D.2 Pretrained models

Here we specify the pretrained models we used, and compare them with the
ones used in ViperGPT:

• Open-vocabulary object detector:

– Ours: OWLv2 [Minderer et al., 2023].

– ViperGPT: GLIP Li et al. [2022] from the official GitHub repository1.

• Depth estimation model:

– Ours: MiDaS [Ranftl et al., 2020] v2 “DPT_Small” from PyTorch
hub2.

– ViperGPT: MiDaS [Ranftl et al., 2020] v2 “DPT_Large” version from
the PyTorch hub3.

• Vision-language captioning model:

– Ours: PaLI-3 [Chen et al., 2023b].

– ViperGPT: BLIP-2 [Li et al., 2023] from the official repository4.

• CLIP-style image-text embedding model:

– Ours: SigLiT [Zhai et al., 2023].

– ViperGPT: X-VLM [Zeng et al., 2021] version finetuned for retrieval
on MSCOCO from the official repository5.

• Code-generating LLM:

– Ours: code-bison accessible via the Google Cloud Vertex AI API
[Google, 2023].

– ViperGPT: Codex (code-davinci-002) via the official OpenAI
Python API6.

1https://github.com/microsoft/GLIP
2https://pytorch.org/hub/intelisl_midas_v2/
3https://pytorch.org/hub/intelisl_midas_v2/
4https://github.com/salesforce/LAVIS/tree/main/projects/blip2
5https://github.com/zengyan-97/X-VLM
6https://openai.com/blog/openai-api

173 D.3 Self-debugging prompt

• Answer selector (based on context information) LLM for multiple choice
questions in NExT-QA:

– Ours: code-bison accessible via the Google Cloud Vertex AI API
[Google, 2023].

– ViperGPT: GPT-3 via the official OpenAI Python API7.

D.3 Self-debugging prompt

1 prompt += f"""
2

3 Previously , for the query:
4 # {query}
5 you've generated the following code:
6 {code}
7

8 The execution of the above code failed and returned the following
error message:

9 {error}.
10

11 Given this, correct the above function , such that it executes
correctly and solves the same query.

12

13 """

7https://openai.com/blog/openai-api

174 D.4 Prompt listings

D.4 Prompt listings

D.4.1 RefCOCO and GQA - ViperGPT API

1 import math
2

3 class ImagePatch:
4 """A Python class containing a crop of an image centered

around a particular object , as well as relevant information.
5 Attributes
6 ----------
7 cropped_image : array_like
8 An array -like of the cropped image taken from the original

image.
9 left, lower , right , upper : int

10 An int describing the position of the (left/lower/right/
upper) border of the crop's bounding box in the original image.

11

12 Methods
13 -------
14 find(object_name: str)->List[ImagePatch]
15 Returns a list of new ImagePatch objects containing crops

of the image centered around any objects found in the
16 image matching the object_name.
17 exists(object_name: str)->bool
18 Returns True if the object specified by object_name is

found in the image , and False otherwise.
19 verify_property(property: str)->bool
20 Returns True if the property is met, and False otherwise.
21 compute_depth()->float
22 Returns the median depth of the image crop.
23 crop(left: int, lower: int, right: int, upper: int)->

ImagePatch
24 Returns a new ImagePatch object containing a crop of the

image at the given coordinates.
25 """
26

27 def __init__(self, image , left: int = None, lower: int = None,
right: int = None, upper: int = None):

28 """Initializes an ImagePatch object by cropping the image
at the given coordinates and stores the coordinates as

29 attributes. If no coordinates are provided , the image is
left unmodified , and the coordinates are set to the

30 dimensions of the image.
31 Parameters
32 -------

175 D.4 Prompt listings

33 image : array_like
34 An array -like of the original image.
35 left, lower , right , upper : int
36 An int describing the position of the (left/lower/

right/upper) border of the crop's bounding box in the original
image.

37 """
38 if left is None and right is None and upper is None and

lower is None:
39 self.cropped_image = image
40 self.left = 0
41 self.lower = 0
42 self.right = image.shape[2] # width
43 self.upper = image.shape[1] # height
44 else:
45 self.cropped_image = image[:, lower:upper , left:right]
46 self.left = left
47 self.upper = upper
48 self.right = right
49 self.lower = lower
50

51 self.width = self.cropped_image.shape[2]
52 self.height = self.cropped_image.shape[1]
53

54 self.horizontal_center = (self.left + self.right) / 2
55 self.vertical_center = (self.lower + self.upper) / 2
56

57 def find(self, object_name: str) -> List[ImagePatch]:
58 """Returns a list of ImagePatch objects matching

object_name contained in the crop if any are found.
59 Otherwise , returns an empty list.
60 Parameters
61 ----------
62 object_name : str
63 the name of the object to be found
64

65 Returns
66 -------
67 List[ImagePatch]
68 a list of ImagePatch objects matching object_name

contained in the crop
69

70 Examples
71 --------
72 >>> # return the foo
73 >>> def execute_command(image) -> List[ImagePatch]:

176 D.4 Prompt listings

74 >>> image_patch = ImagePatch(image)
75 >>> foo_patches = image_patch.find("foo")
76 >>> return foo_patches
77 """
78 return find_in_image(self.cropped_image , object_name)
79

80 def exists(self, object_name: str) -> bool:
81 """Returns True if the object specified by object_name is

found in the image , and False otherwise.
82 Parameters
83 -------
84 object_name : str
85 A string describing the name of the object to be found

in the image.
86

87 Examples
88 -------
89 >>> # Are there both foos and garply bars in the photo?
90 >>> def execute_command(image)->str:
91 >>> image_patch = ImagePatch(image)
92 >>> is_foo = image_patch.exists("foo")
93 >>> is_garply_bar = image_patch.exists("garply bar")
94 >>> return is_foo and is_garply_bar
95 """
96 return len(self.find(object_name)) > 0
97

98 def verify_property(self, object_name: str, visual_property:
str) -> bool:

99 """Returns True if the object possesses the visual
property , and False otherwise.

100 Differs from 'exists' in that it presupposes the existence
of the object specified by object_name , instead checking

whether the object possesses the property.
101 Parameters
102 -------
103 object_name : str
104 A string describing the name of the object to be found

in the image.
105 visual_property : str
106 A string describing the simple visual property (e.g.,

color , shape , material) to be checked.
107

108 Examples
109 -------
110 >>> # Do the letters have blue color?
111 >>> def execute_command(image) -> str:

177 D.4 Prompt listings

112 >>> image_patch = ImagePatch(image)
113 >>> letters_patches = image_patch.find("letters")
114 >>> # Question assumes only one letter patch
115 >>> return letters_patches[0].verify_property("letters

", "blue")
116 """
117 return verify_property(self.cropped_image , object_name ,

property)
118

119 def compute_depth(self):
120 """Returns the median depth of the image crop
121 Parameters
122 ----------
123 Returns
124 -------
125 float
126 the median depth of the image crop
127

128 Examples
129 --------
130 >>> # the bar furthest away
131 >>> def execute_command(image)->ImagePatch:
132 >>> image_patch = ImagePatch(image)
133 >>> bar_patches = image_patch.find("bar")
134 >>> bar_patches.sort(key=lambda bar: bar.compute_depth

())
135 >>> return bar_patches[-1]
136 """
137 depth_map = compute_depth(self.cropped_image)
138 return depth_map.median()
139

140 def crop(self, left: int, lower: int, right: int, upper: int)
-> ImagePatch:

141 """Returns a new ImagePatch cropped from the current
ImagePatch.

142 Parameters
143 -------
144 left, lower , right , upper : int
145 The (left/lower/right/upper)most pixel of the cropped

image.
146 -------
147 """
148 return ImagePatch(self.cropped_image , left, lower , right ,

upper)
149

150 def overlaps_with(self, left, lower , right , upper):

178 D.4 Prompt listings

151 """Returns True if a crop with the given coordinates
overlaps with this one,

152 else False.
153 Parameters
154 ----------
155 left, lower , right , upper : int
156 the (left/lower/right/upper) border of the crop to be

checked
157

158 Returns
159 -------
160 bool
161 True if a crop with the given coordinates overlaps

with this one, else False
162

163 Examples
164 --------
165 >>> # black foo on top of the qux
166 >>> def execute_command(image) -> ImagePatch:
167 >>> image_patch = ImagePatch(image)
168 >>> qux_patches = image_patch.find("qux")
169 >>> qux_patch = qux_patches[0]
170 >>> foo_patches = image_patch.find("black foo")
171 >>> for foo in foo_patches:
172 >>> if foo.vertical_center > qux_patch.

vertical_center
173 >>> return foo
174 """
175 return self.left <= right and self.right >= left and self.

lower <= upper and self.upper >= lower
176

177

178 def best_image_match(list_patches: List[ImagePatch], content: List
[str], return_index=False) -> Union[ImagePatch , int]:

179 """Returns the patch most likely to contain the content.
180 Parameters
181 ----------
182 list_patches : List[ImagePatch]
183 content : List[str]
184 the object of interest
185 return_index : bool
186 if True, returns the index of the patch most likely to

contain the object
187

188 Returns
189 -------

179 D.4 Prompt listings

190 int
191 Patch most likely to contain the object
192 """
193 return best_image_match(list_patches , content , return_index)
194

195

196 def distance(patch_a: ImagePatch , patch_b: ImagePatch) -> float:
197 """
198 Returns the distance between the edges of two ImagePatches. If

the patches overlap , it returns a negative distance
199 corresponding to the negative intersection over union.
200

201 Parameters
202 ----------
203 patch_a : ImagePatch
204 patch_b : ImagePatch
205

206 Examples
207 --------
208 # Return the qux that is closest to the foo
209 >>> def execute_command(image):
210 >>> image_patch = ImagePatch(image)
211 >>> qux_patches = image_patch.find('qux')
212 >>> foo_patches = image_patch.find('foo')
213 >>> foo_patch = foo_patches[0]
214 >>> qux_patches.sort(key=lambda x: distance(x, foo_patch))
215 >>> return qux_patches[0]
216 """
217 return distance(patch_a , patch_b)
218

219 INSERT_IN_CONTEXT_EXAMPLES_HERE
220

221 Write a function using Python and the ImagePatch class (above)
that could be executed to provide an answer to the query.

222

223 Consider the following guidelines:
224 - Use base Python (comparison , sorting) for basic logical

operations , left/right/up/down, math, etc.
225 - Make sure to always return an ImagePatch object.
226 - Make sure that for all possible control flows , the program

always returns an ImagePatch object.
227

228 INSERT_PREVIOUS_CODE_AND_ERROR_HERE
229

230 # INSERT_QUERY_HERE

180 D.4 Prompt listings

D.4.2 RefCOCO and GQA - Abstract API

1 import math
2

3 class ImagePatch:
4 """A Python class containing a crop of an image centered

around a particular object , as well as relevant information.
5 Attributes
6 ----------
7 cropped_image : array_like
8 An array -like of the cropped image taken from the original

image.
9 left, lower , right , upper : int

10 An int describing the position of the (left/lower/right/
upper) border of the crop's bounding box in the original image.

11

12 Methods
13 -------
14 find(object_name: str)->List[ImagePatch]
15 Returns a list of new ImagePatch objects containing crops

of the image centered around any objects found in the
16 image matching the object_name.
17 exists(object_name: str)->bool
18 Returns True if the object specified by object_name is

found in the image , and False otherwise.
19 verify_property(property: str)->bool
20 Returns True if the property is met, and False otherwise.
21 compute_depth()->float
22 Returns the median depth of the image crop.
23 crop(left: int, lower: int, right: int, upper: int)->

ImagePatch
24 Returns a new ImagePatch object containing a crop of the

image at the given coordinates.
25 """
26

27 def __init__(self, image , left: int = None, lower: int = None,
right: int = None, upper: int = None):

28 """Initializes an ImagePatch object by cropping the image
at the given coordinates and stores the coordinates as

29 attributes. If no coordinates are provided , the image is
left unmodified , and the coordinates are set to the

30 dimensions of the image.
31 Parameters
32 -------
33 image : array_like
34 An array -like of the original image.
35 left, lower , right , upper : int

181 D.4 Prompt listings

36 An int describing the position of the (left/lower/
right/upper) border of the crop's bounding box in the original
image.

37 """
38 if left is None and right is None and upper is None and

lower is None:
39 self.cropped_image = image
40 self.left = 0
41 self.lower = 0
42 self.right = image.shape[2] # width
43 self.upper = image.shape[1] # height
44 else:
45 self.cropped_image = image[:, lower:upper , left:right]
46 self.left = left
47 self.upper = upper
48 self.right = right
49 self.lower = lower
50

51 self.width = self.cropped_image.shape[2]
52 self.height = self.cropped_image.shape[1]
53

54 self.horizontal_center = (self.left + self.right) / 2
55 self.vertical_center = (self.lower + self.upper) / 2
56

57 def find(self, object_name: str) -> List[ImagePatch]:
58 """Returns a list of ImagePatch objects matching

object_name contained in the crop if any are found.
59 Otherwise , returns an empty list.
60 Parameters
61 ----------
62 object_name : str
63 the name of the object to be found
64

65 Returns
66 -------
67 List[ImagePatch]
68 a list of ImagePatch objects matching object_name

contained in the crop
69

70 Examples
71 --------
72 >>> # return the foo
73 >>> def execute_command(image) -> List[ImagePatch]:
74 >>> image_patch = ImagePatch(image)
75 >>> foo_patches = image_patch.find("foo")
76 >>> return foo_patches

182 D.4 Prompt listings

77 """
78 return find_in_image(self.cropped_image , object_name)
79

80 def exists(self, object_name: str) -> bool:
81 """Returns True if the object specified by object_name is

found in the image , and False otherwise.
82 Parameters
83 -------
84 object_name : str
85 A string describing the name of the object to be found

in the image.
86

87 Examples
88 -------
89 >>> # Are there both foos and garply bars in the photo?
90 >>> def execute_command(image)->str:
91 >>> image_patch = ImagePatch(image)
92 >>> is_foo = image_patch.exists("foo")
93 >>> is_garply_bar = image_patch.exists("garply bar")
94 >>> return is_foo and is_garply_bar
95 """
96 return len(self.find(object_name)) > 0
97

98 def verify_property(self, object_name: str, visual_property:
str) -> bool:

99 """Returns True if the object possesses the visual
property , and False otherwise.

100 Differs from 'exists' in that it presupposes the existence
of the object specified by object_name , instead checking

whether the object possesses the property.
101 Parameters
102 -------
103 object_name : str
104 A string describing the name of the object to be found

in the image.
105 visual_property : str
106 A string describing the simple visual property (e.g.,

color , shape , material) to be checked.
107

108 Examples
109 -------
110 >>> # Do the letters have blue color?
111 >>> def execute_command(image) -> str:
112 >>> image_patch = ImagePatch(image)
113 >>> letters_patches = image_patch.find("letters")
114 >>> # Question assumes only one letter patch

183 D.4 Prompt listings

115 >>> return letters_patches[0].verify_property("letters
", "blue")

116 """
117 return verify_property(self.cropped_image , object_name ,

property)
118

119 def compute_depth(self):
120 """Returns the median depth of the image crop
121 Parameters
122 ----------
123 Returns
124 -------
125 float
126 the median depth of the image crop
127

128 Examples
129 --------
130 >>> # the bar furthest away
131 >>> def execute_command(image)->ImagePatch:
132 >>> image_patch = ImagePatch(image)
133 >>> bar_patches = image_patch.find("bar")
134 >>> bar_patches.sort(key=lambda bar: bar.compute_depth

())
135 >>> return bar_patches[-1]
136 """
137 depth_map = compute_depth(self.cropped_image)
138 return depth_map.median()
139

140 def crop(self, left: int, lower: int, right: int, upper: int)
-> ImagePatch:

141 """Returns a new ImagePatch cropped from the current
ImagePatch.

142 Parameters
143 -------
144 left, lower , right , upper : int
145 The (left/lower/right/upper)most pixel of the cropped

image.
146 -------
147 """
148 return ImagePatch(self.cropped_image , left, lower , right ,

upper)
149

150 def overlaps_with(self, left, lower , right , upper):
151 """Returns True if a crop with the given coordinates

overlaps with this one,
152 else False.

184 D.4 Prompt listings

153 Parameters
154 ----------
155 left, lower , right , upper : int
156 the (left/lower/right/upper) border of the crop to be

checked
157

158 Returns
159 -------
160 bool
161 True if a crop with the given coordinates overlaps

with this one, else False
162

163 Examples
164 --------
165 >>> # black foo on top of the qux
166 >>> def execute_command(image) -> ImagePatch:
167 >>> image_patch = ImagePatch(image)
168 >>> qux_patches = image_patch.find("qux")
169 >>> qux_patch = qux_patches[0]
170 >>> foo_patches = image_patch.find("black foo")
171 >>> for foo in foo_patches:
172 >>> if foo.vertical_center > qux_patch.

vertical_center
173 >>> return foo
174 """
175 return self.left <= right and self.right >= left and self.

lower <= upper and self.upper >= lower
176

177

178 def best_image_match(list_patches: List[ImagePatch], content: List
[str], return_index=False) -> Union[ImagePatch , int]:

179 """Returns the patch most likely to contain the content.
180 Parameters
181 ----------
182 list_patches : List[ImagePatch]
183 content : List[str]
184 the object of interest
185 return_index : bool
186 if True, returns the index of the patch most likely to

contain the object
187

188 Returns
189 -------
190 int
191 Patch most likely to contain the object
192 """

185 D.4 Prompt listings

193 return best_image_match(list_patches , content , return_index)
194

195

196 def distance(patch_a: ImagePatch , patch_b: ImagePatch) -> float:
197 """
198 Returns the distance between the edges of two ImagePatches. If

the patches overlap , it returns a negative distance
199 corresponding to the negative intersection over union.
200

201 Parameters
202 ----------
203 patch_a : ImagePatch
204 patch_b : ImagePatch
205

206 Examples
207 --------
208 # Return the qux that is closest to the foo
209 >>> def execute_command(image):
210 >>> image_patch = ImagePatch(image)
211 >>> qux_patches = image_patch.find('qux')
212 >>> foo_patches = image_patch.find('foo')
213 >>> foo_patch = foo_patches[0]
214 >>> qux_patches.sort(key=lambda x: distance(x, foo_patch))
215 >>> return qux_patches[0]
216 """
217 return distance(patch_a , patch_b)
218

219 def get_patch_left_of(patch: ImagePatch) -> ImagePatch:
220 left_patch = get_patch_left_of(patch)
221 return left_patch
222

223 def get_patch_right_of(patch: ImagePatch) -> ImagePatch:
224 right_patch = get_patch_right_of(patch)
225 return right_patch
226

227 def get_patch_above_of(patch: ImagePatch) -> ImagePatch:
228 above_patch = get_patch_above_of(patch)
229 return above_patch
230

231 def get_patch_below_of(patch: ImagePatch) -> ImagePatch:
232 below_patch = get_patch_below_of(patch)
233 return below_patch
234

235 def get_patch_around_of(patch: ImagePatch) -> ImagePatch:
236 around_patch = get_patch_around_of(patch)
237 return around_patch

186 D.4 Prompt listings

238

239 def sort_patches_left_to_right(list_patches: List[ImagePatch]) ->
List[ImagePatch]:

240 """
241 Sorts patches according to their horizontal centers.
242

243 Parameters
244 ----------
245 list_patches : List[ImagePatch]
246

247 Examples
248 --------
249 # Right foo
250 >>> def execute_command(image):
251 >>> image_patch = ImagePatch(image)
252 >>> foo_patches = image_patch.find('foo')
253 >>> foo_patches = sort_patches_left_to_right(foo_patches)
254 >>> right_foo_patch = foo_patches[-1]
255 >>> return right_foo_patch
256 """
257 return sort_patches_left_to_right(list_patches)
258

259

260 def sort_patches_bottom_to_top(list_patches: List[ImagePatch]) ->
List[ImagePatch]:

261 """
262 Sorts patches according to their vertical centers.
263

264 Parameters
265 ----------
266 list_patches : List[ImagePatch]
267

268 Examples
269 --------
270 # Second bar from the top
271 >>> def execute_command(image):
272 >>> image_patch = ImagePatch(image)
273 >>> bar_patches = image_patch.find('bar')
274 >>> bar_patches = sort_patches_bottom_to_top(bar_patches)
275 >>> second_topmost_bar_patch = bar_patches[-2]
276 >>> return second_topmost_bar_patch
277 """
278 return sort_patches_bottom_to_top(list_patches)
279

280

281 def sort_patches_front_to_back(list_patches: List[ImagePatch]) ->

187 D.4 Prompt listings

List[ImagePatch]:
282 """
283 Sorts patches according to how far from camera they are.
284

285 Parameters
286 ----------
287 list_patches : List[ImagePatch]
288

289 Examples
290 --------
291 # Person in the back
292 >>> def execute_command(image):
293 >>> image_patch = ImagePatch(image)
294 >>> person_patches = image_patch.find('person')
295 >>> person_patches = sort_patches_front_to_back(

person_patches)
296 >>> person_in_the_back = person_patches[-1]
297 >>> return person_in_the_back
298 """
299 return sort_patches_front_to_back(list_patches)
300

301

302 def get_middle_patch(list_patches: List[ImagePatch]) -> ImagePatch
:

303 """
304 Returns the middle patch.
305

306 Parameters
307 ----------
308 list_patches : List[ImagePatch]
309

310 Examples
311 --------
312 # Middle ham
313 >>> def execute_command(image):
314 >>> image_patch = ImagePatch(image)
315 >>> ham_patches = image_patch.find('ham')
316 >>> middle_ham_patch = get_middle_patch(ham_patches)
317 >>> return middle_ham_patch
318 """
319 return get_middle_patch(list_patches)
320

321

322 def get_patch_closest_to_anchor_object(list_patches: List[
ImagePatch], anchor_object: ImagePatch) -> ImagePatch:

323 """

188 D.4 Prompt listings

324 Returns the object from list_patches that is the closest to
the anchor_object.

325

326 Parameters
327 ----------
328 list_patches : List[ImagePatch]
329 anchor_object : ImagePatch
330

331 Examples
332 --------
333 # Foo next to bar
334 >>> def execute_command(image):
335 >>> image_patch = ImagePatch(image)
336 >>> foo_patches = image_patch.find('foo')
337 >>> bar_patches = image_patch.find('bar')
338 >>> bar_patch = bar_patches[0]
339 >>> foo_next_to_bar_patch =

get_patch_closest_to_anchor_object(foo_patches , bar_patch)
340 >>> return foo_next_to_bar_patch
341 """
342 return get_patch_closest_to_anchor_object(list_patches ,

anchor_object)
343

344

345 INSERT_IN_CONTEXT_EXAMPLES_HERE
346

347 Write a function using Python and the ImagePatch class (above)
that could be executed to provide an answer to the query.

348

349 Consider the following guidelines:
350 - Use base Python (comparison , sorting) for basic logical

operations , left/right/up/down, math, etc.
351 - Make sure to always return an ImagePatch object.
352 - Make sure that for all possible control flows , the program

always returns an ImagePatch object.
353 - ImagePatch class uses left and right to denote horizontal edges.
354 - ImagePatch class uses bottom and top to denote vertical edges.
355

356 INSERT_PREVIOUS_CODE_AND_ERROR_HERE
357

358 # INSERT_QUERY_HERE

189 D.4 Prompt listings

D.4.3 NExT-QA - ViperGPT API

1 import math
2

3 class ImagePatch:
4 """A Python class containing a crop of an image centered

around a particular object , as well as relevant information.
5 Attributes
6 ----------
7 cropped_image : array_like
8 An array -like of the cropped image taken from the original

image.
9 left, lower , right , upper : int

10 An int describing the position of the (left/lower/right/
upper) border of the crop's bounding box in the original image.

11

12 Methods
13 -------
14 find(object_name: str)->List[ImagePatch]
15 Returns a list of new ImagePatch objects containing crops

of the image centered around any objects found in the
16 image matching the object_name.
17 exists(object_name: str)->bool
18 Returns True if the object specified by object_name is

found in the image , and False otherwise.
19 verify_property(property: str)->bool
20 Returns True if the property is met, and False otherwise.
21 best_text_match(option_list: List[str], prefix: str)->str
22 Returns the string that best matches the image.
23 simple_query(question: str=None)->str
24 Returns the answer to a basic question asked about the

image. If no question is provided , returns the answer to "What
is this?".

25 compute_depth()->float
26 Returns the median depth of the image crop.
27 crop(left: int, lower: int, right: int, upper: int)->

ImagePatch
28 Returns a new ImagePatch object containing a crop of the

image at the given coordinates.
29 """
30

31 def __init__(self, image , left: int = None, lower: int = None,
right: int = None, upper: int = None):

32 """Initializes an ImagePatch object by cropping the image
at the given coordinates and stores the coordinates as

33 attributes. If no coordinates are provided , the image is
left unmodified , and the coordinates are set to the

190 D.4 Prompt listings

34 dimensions of the image.
35 Parameters
36 -------
37 image : array_like
38 An array -like of the original image.
39 left, lower , right , upper : int
40 An int describing the position of the (left/lower/

right/upper) border of the crop's bounding box in the original
image.

41 """
42 if left is None and right is None and upper is None and

lower is None:
43 self.cropped_image = image
44 self.left = 0
45 self.lower = 0
46 self.right = image.shape[2] # width
47 self.upper = image.shape[1] # height
48 else:
49 self.cropped_image = image[:, lower:upper , left:right]
50 self.left = left
51 self.upper = upper
52 self.right = right
53 self.lower = lower
54

55 self.width = self.cropped_image.shape[2]
56 self.height = self.cropped_image.shape[1]
57

58 self.horizontal_center = (self.left + self.right) / 2
59 self.vertical_center = (self.lower + self.upper) / 2
60

61 def find(self, object_name: str) -> List[ImagePatch]:
62 """Returns a list of ImagePatch objects matching

object_name contained in the crop if any are found.
63 Otherwise , returns an empty list.
64 Parameters
65 ----------
66 object_name : str
67 the name of the object to be found
68

69 Returns
70 -------
71 List[ImagePatch]
72 a list of ImagePatch objects matching object_name

contained in the crop
73

74 Examples

191 D.4 Prompt listings

75 --------
76 >>> # return the foo
77 >>> def execute_command(image) -> List[ImagePatch]:
78 >>> image_patch = ImagePatch(image)
79 >>> foo_patches = image_patch.find("foo")
80 >>> return foo_patches
81 """
82 return find_in_image(self.cropped_image , object_name)
83

84 def exists(self, object_name: str) -> bool:
85 """Returns True if the object specified by object_name is

found in the image , and False otherwise.
86 Parameters
87 -------
88 object_name : str
89 A string describing the name of the object to be found

in the image.
90

91 Examples
92 -------
93 >>> # Are there both foos and garply bars in the photo?
94 >>> def execute_command(image)->str:
95 >>> image_patch = ImagePatch(image)
96 >>> is_foo = image_patch.exists("foo")
97 >>> is_garply_bar = image_patch.exists("garply bar")
98 >>> return bool_to_yesno(is_foo and is_garply_bar)
99 """

100 return len(self.find(object_name)) > 0
101

102 def verify_property(self, object_name: str, visual_property:
str) -> bool:

103 """Returns True if the object possesses the visual
property , and False otherwise.

104 Differs from 'exists' in that it presupposes the existence
of the object specified by object_name , instead checking

whether the object possesses the property.
105 Parameters
106 -------
107 object_name : str
108 A string describing the name of the object to be found

in the image.
109 visual_property : str
110 A string describing the simple visual property (e.g.,

color , shape , material) to be checked.
111

112 Examples

192 D.4 Prompt listings

113 -------
114 >>> # Do the letters have blue color?
115 >>> def execute_command(image) -> str:
116 >>> image_patch = ImagePatch(image)
117 >>> letters_patches = image_patch.find("letters")
118 >>> # Question assumes only one letter patch
119 >>> return bool_to_yesno(letters_patches[0].

verify_property("letters", "blue"))
120 """
121 return verify_property(self.cropped_image , object_name ,

property)
122

123 def best_text_match(self, option_list: List[str]) -> str:
124 """Returns the string that best matches the image.
125 Parameters
126 -------
127 option_list : str
128 A list with the names of the different options
129 prefix : str
130 A string with the prefixes to append to the options
131

132 Examples
133 -------
134 >>> # Is the foo gold or white?
135 >>> def execute_command(image)->str:
136 >>> image_patch = ImagePatch(image)
137 >>> foo_patches = image_patch.find("foo")
138 >>> # Question assumes one foo patch
139 >>> return foo_patches[0].best_text_match(["gold", "

white"])
140 """
141 return best_text_match(self.cropped_image , option_list)
142

143 def simple_query(self, question: str = None) -> str:
144 """Returns the answer to a basic question asked about the

image. If no question is provided , returns the answer
145 to "What is this?". The questions are about basic

perception , and are not meant to be used for complex reasoning
146 or external knowledge.
147 Parameters
148 -------
149 question : str
150 A string describing the question to be asked.
151

152 Examples
153 -------

193 D.4 Prompt listings

154

155 >>> # Which kind of baz is not fredding?
156 >>> def execute_command(image) -> str:
157 >>> image_patch = ImagePatch(image)
158 >>> baz_patches = image_patch.find("baz")
159 >>> for baz_patch in baz_patches:
160 >>> if not baz_patch.verify_property("baz", "

fredding"):
161 >>> return baz_patch.simple_query("What is

this baz?")
162

163 >>> # What color is the foo?
164 >>> def execute_command(image) -> str:
165 >>> image_patch = ImagePatch(image)
166 >>> foo_patches = image_patch.find("foo")
167 >>> foo_patch = foo_patches[0]
168 >>> return foo_patch.simple_query("What is the color

?")
169

170 >>> # Is the second bar from the left quuxy?
171 >>> def execute_command(image) -> str:
172 >>> image_patch = ImagePatch(image)
173 >>> bar_patches = image_patch.find("bar")
174 >>> bar_patches.sort(key=lambda x: x.horizontal_center

)
175 >>> bar_patch = bar_patches[1]
176 >>> return bar_patch.simple_query("Is the bar quuxy?")
177 """
178 return simple_query(self.cropped_image , question)
179

180 def compute_depth(self):
181 """Returns the median depth of the image crop
182 Parameters
183 ----------
184 Returns
185 -------
186 float
187 the median depth of the image crop
188

189 Examples
190 --------
191 >>> # the bar furthest away
192 >>> def execute_command(image)->ImagePatch:
193 >>> image_patch = ImagePatch(image)
194 >>> bar_patches = image_patch.find("bar")
195 >>> bar_patches.sort(key=lambda bar: bar.compute_depth

194 D.4 Prompt listings

())
196 >>> return bar_patches[-1]
197 """
198 depth_map = compute_depth(self.cropped_image)
199 return depth_map.median()
200

201 def crop(self, left: int, lower: int, right: int, upper: int)
-> ImagePatch:

202 """Returns a new ImagePatch cropped from the current
ImagePatch.

203 Parameters
204 -------
205 left, lower , right , upper : int
206 The (left/lower/right/upper)most pixel of the cropped

image.
207 -------
208 """
209 return ImagePatch(self.cropped_image , left, lower , right ,

upper)
210

211 def overlaps_with(self, left, lower , right , upper):
212 """Returns True if a crop with the given coordinates

overlaps with this one,
213 else False.
214 Parameters
215 ----------
216 left, lower , right , upper : int
217 the (left/lower/right/upper) border of the crop to be

checked
218

219 Returns
220 -------
221 bool
222 True if a crop with the given coordinates overlaps

with this one, else False
223

224 Examples
225 --------
226 >>> # black foo on top of the qux
227 >>> def execute_command(image) -> ImagePatch:
228 >>> image_patch = ImagePatch(image)
229 >>> qux_patches = image_patch.find("qux")
230 >>> qux_patch = qux_patches[0]
231 >>> foo_patches = image_patch.find("black foo")
232 >>> for foo in foo_patches:
233 >>> if foo.vertical_center > qux_patch.

195 D.4 Prompt listings

vertical_center
234 >>> return foo
235 """
236 return self.left <= right and self.right >= left and self.

lower <= upper and self.upper >= lower
237

238

239 class VideoSegment:
240 """A Python class containing a set of frames represented as

ImagePatch objects , as well as relevant information.
241 Attributes
242 ----------
243 video : torch.Tensor
244 A tensor of the original video.
245 start : int
246 An int describing the starting frame in this video segment

with respect to the original video.
247 end : int
248 An int describing the ending frame in this video segment with

respect to the original video.
249 num_frames ->int
250 An int containing the number of frames in the video segment.
251

252 Methods
253 -------
254 frame_iterator ->Iterator[ImagePatch]
255 trim(start , end)->VideoSegment
256 Returns a new VideoSegment containing a trimmed version of the

original video at the [start , end] segment.
257 select_answer(info, question , options)->str
258 Returns the answer to the question given the options and

additional information.
259 """
260

261 def __init__(self, video: torch.Tensor , start: int = None, end
: int = None, parent_start=0, queues=None):

262 """Initializes a VideoSegment object by trimming the video
at the given [start , end] times and stores the

263 start and end times as attributes. If no times are
provided , the video is left unmodified , and the times are

264 set to the beginning and end of the video.
265

266 Parameters
267 -------
268 video : torch.Tensor
269 A tensor of the original video.

196 D.4 Prompt listings

270 start : int
271 An int describing the starting frame in this video segment

with respect to the original video.
272 end : int
273 An int describing the ending frame in this video segment

with respect to the original video.
274 """
275

276 if start is None and end is None:
277 self.trimmed_video = video
278 self.start = 0
279 self.end = video.shape[0] # duration
280 else:
281 self.trimmed_video = video[start:end]
282 if start is None:
283 start = 0
284 if end is None:
285 end = video.shape[0]
286 self.start = start + parent_start
287 self.end = end + parent_start
288

289 self.num_frames = self.trimmed_video.shape[0]
290

291 def frame_iterator(self) -> Iterator[ImagePatch]:
292 """Returns an iterator over the frames in the video

segment."""
293 for i in range(self.num_frames):
294 yield ImagePatch(self.trimmed_video[i], self.start + i

)
295

296 def trim(self, start: Union[int, None] = None, end: Union[int,
None] = None) -> VideoSegment:

297 """Returns a new VideoSegment containing a trimmed version
of the original video at the [start , end]

298 segment.
299

300 Parameters
301 ----------
302 start : Union[int, None]
303 An int describing the starting frame in this video segment

with respect to the original video.
304 end : Union[int, None]
305 An int describing the ending frame in this video segment

with respect to the original video.
306

307 Examples

197 D.4 Prompt listings

308 --------
309 >>> # Return the second half of the video
310 >>> def execute_command(video):
311 >>> video_segment = VideoSegment(video)
312 >>> video_second_half = video_segment.trim(video_segment.

num_frames // 2, video_segment.num_frames)
313 >>> return video_second_half
314 """
315 if start is not None:
316 start = max(start , 0)
317 if end is not None:
318 end = min(end, self.num_frames)
319

320 return VideoSegment(self.trimmed_video , start , end, self.
start)

321

322 def select_answer(self, info: dict, question: str, options:
List[str]) -> str:

323 return select_answer(self.trimmed_video , info, question ,
options)

324

325 def __repr__(self):
326 return "VideoSegment({}, {})".format(self.start , self.end)
327

328 def simple_query(self, question) -> str:
329 """Ask a simple question about the video.
330

331 Examples
332 --------
333 # why does X happen?
334 # possible_answers: ['answer1', 'answer2', 'answer3', '

answer4', 'answer5 ']
335 def execute_command(video , question , possible_answers)->[

str, dict]:
336 # Create a video segment object
337 video_segment = VideoSegment(video)
338 # The question is simple , so just ask
339 info = video_segment.simple_query("why does X happen

?")
340 # Choose the answer among given possible answers
341 answer = select_answer(info, question ,

possible_answers)
342 return answer
343 """
344 answer = simple_query(question)
345 return answer

198 D.4 Prompt listings

346

347

348 def best_image_match(list_patches: List[ImagePatch], content: List
[str], return_index=False) -> Union[ImagePatch , int]:

349 """Returns the patch most likely to contain the content.
350 Parameters
351 ----------
352 list_patches : List[ImagePatch]
353 content : List[str]
354 the object of interest
355 return_index : bool
356 if True, returns the index of the patch most likely to

contain the object
357

358 Returns
359 -------
360 int
361 Patch most likely to contain the object
362 """
363 return best_image_match(list_patches , content , return_index)
364

365

366 def distance(patch_a: ImagePatch , patch_b: ImagePatch) -> float:
367 """
368 Returns the distance between the edges of two ImagePatches. If

the patches overlap , it returns a negative distance
369 corresponding to the negative intersection over union.
370

371 Parameters
372 ----------
373 patch_a : ImagePatch
374 patch_b : ImagePatch
375

376 Examples
377 --------
378 # Return the qux that is closest to the foo
379 >>> def execute_command(image):
380 >>> image_patch = ImagePatch(image)
381 >>> qux_patches = image_patch.find('qux')
382 >>> foo_patches = image_patch.find('foo')
383 >>> foo_patch = foo_patches[0]
384 >>> qux_patches.sort(key=lambda x: distance(x, foo_patch))
385 >>> return qux_patches[0]
386 """
387 return distance(patch_a , patch_b)
388

199 D.4 Prompt listings

389

390 def bool_to_yesno(bool_answer: bool) -> str:
391 return "yes" if bool_answer else "no"
392

393

394 def select_answer(info: str, question: question , possible_answers:
str) -> str:

395 """Given an info, question and possible answers , select the
correct answer.

396

397 Examples
398 --------
399 # what does man do at the end of the video
400 # possible_answers: ['answer1', 'answer2', 'answer3', 'answer4

', 'answer5 ']
401 def execute_command(video , question , possible_answers)->[str,

dict]:
402 # Create a video segment object
403 video_segment = VideoSegment(video)
404 # Caption last frame of the video (end of video)
405 last_frame = ImagePatch(video_segment , -1)
406 last_caption = last_frame.simple_query("What is this?")
407 men = last_frame.find("man")
408 if len(men) == 0:
409 men = [last_frame]
410 man = men[0]
411 man_action = man.simple_query("What is the man doing?")
412 # Answer the question. Remember to create the info

dictionary
413 info = {
414 "Caption of last frame": last_caption ,
415 "Man looks like he is doing": man_action
416 }
417 answer = video_segment.select_answer(info, question ,

possible_answers)
418 return answer , info
419 """
420

421

422 INSERT_IN_CONTEXT_EXAMPLES_HERE
423

424

425 Write a function using Python and the VideoSegment class (above)
that could be executed to provide an answer to the query.

426

427 Consider the following guidelines:

200 D.4 Prompt listings

428 - Use base Python (comparison , sorting) for basic logical
operations , left/right/up/down, math, etc.

429

430 INSERT_PREVIOUS_CODE_AND_ERROR_HERE
431

432 # INSERT_QUERY_HERE

201 D.4 Prompt listings

D.4.4 NExT-QA - Abstract API

1 import math
2

3

4 class VideoSegment:
5 """A Python class containing a video , as well as relevant

information.
6 Attributes
7 ----------
8 video : np.ndarray
9 A tensor of the original video.

10 start : int
11 An int describing the starting frame in this video segment

with respect to the original video.
12 end : int
13 An int describing the ending frame in this video segment with

respect to the original video.
14 num_frames ->int
15 An int containing the number of frames in the video segment.
16

17 Methods
18 -------
19 trim(start , end)->VideoSegment
20 Returns a new VideoSegment containing a trimmed version of the

original video at the [start , end] segment.
21 select_answer(info, question , possible_answers)->str
22 Returns the answer to the question given the possible answers

and additional information.
23 """
24

25 def __init__(self, video: np.ndarray , start: int = None, end:
int = None, parent_start=0, queues=None):

26 """Initializes a VideoSegment object by trimming the video
at the given [start , end] times and stores the

27 start and end times as attributes. If no times are
provided , the video is left unmodified , and the times are

28 set to the beginning and end of the video.
29

30 Parameters
31 -------
32 video : np.ndarray
33 A tensor of the original video.
34 start : int
35 An int describing the starting frame in this video segment

with respect to the original video.
36 end : int

202 D.4 Prompt listings

37 An int describing the ending frame in this video segment
with respect to the original video.

38 """
39

40 if start is None and end is None:
41 self.trimmed_video = video
42 self.start = 0
43 self.end = video.shape[0] # duration
44 else:
45 self.trimmed_video = video[start:end]
46 if start is None:
47 start = 0
48 if end is None:
49 end = video.shape[0]
50 self.start = start + parent_start
51 self.end = end + parent_start
52

53 self.num_frames = self.trimmed_video.shape[0]
54

55 def trim(self, start: Union[int, None] = None, end: Union[int,
None] = None) -> VideoSegment:

56 """Returns a new VideoSegment containing a trimmed version
of the original video at the [start , end]

57 segment.
58

59 Parameters
60 ----------
61 start : Union[int, None]
62 An int describing the starting frame in this video segment

with respect to the original video.
63 end : Union[int, None]
64 An int describing the ending frame in this video segment

with respect to the original video.
65

66 Examples
67 --------
68 >>> # Return the second half of the video
69 >>> def execute_command(video):
70 >>> video_segment = VideoSegment(video)
71 >>> video_second_half = video_segment.trim(

video_segment.num_frames // 2, video_segment.num_frames)
72 >>> return video_second_half
73 """
74 if start is not None:
75 start = max(start , 0)
76 if end is not None:

203 D.4 Prompt listings

77 end = min(end, self.num_frames)
78

79 return VideoSegment(self.trimmed_video , start , end, self.
start)

80

81 def get_video_segment_of_event(self, event) -> VideoSegment:
82 return get_video_segment_of_event(event)
83

84 def get_video_segment_before_event(self, event) ->
VideoSegment:

85 return get_video_segment_before_event(event)
86

87 def get_video_segment_after_event(self, event) -> VideoSegment
:

88 return get_video_segment_after_event(event)
89

90 def caption_video(self, question) -> str:
91 return caption_video(question)
92

93 def simple_query(self, question) -> str:
94 """Ask a simple question about the video.
95

96 Examples
97 --------
98 # why does X happen?
99 # possible_answers: ['answer1', 'answer2', 'answer3', '

answer4', 'answer5 ']
100 def execute_command(video , question , possible_answers)->[

str, dict]:
101 # Create a video segment object
102 video_segment = VideoSegment(video)
103 # The question is simple , so just ask
104 info = video_segment.simple_query("why does X happen

?")
105 # Choose the answer among given possible answers
106 answer = select_answer(info, question ,

possible_answers)
107 return answer
108 """
109 answer = simple_query(question)
110 return answer
111

112

113 def select_answer(info: str, question: question , possible_answers:
str) -> str:

114 """Given an info, question and possible answers , select the

204 D.4 Prompt listings

correct answer.
115

116 Examples
117 --------
118 # what does person A do after event X?
119 # possible_answers: ['answer1', 'answer2', 'answer3', 'answer4

', 'answer5 ']
120 def execute_command(video , question , possible_answers)->[str,

dict]:
121 # Create a video segment object
122 video_segment = VideoSegment(video)
123 # Get video segment after event X
124 video_segment_after = video_segment.

get_video_segment_after_event("event X")
125 # Ask what the person A is doing
126 info = video_segment_after.caption_video("What is person A

doing?")
127 # Choose the answer among given possible answers
128 answer = select_answer(info, question , possible_answers)
129 return answer
130 """
131

132

133 INSERT_IN_CONTEXT_EXAMPLES_HERE
134

135 Write a function using Python and the VideoSegment class (above)
that could be executed to provide an answer to the query.

136

137 Consider the following guidelines:
138 - Use base Python (comparison , sorting) for basic logical

operations , left/right/up/down, math, etc.
139 - The input to your program is a video , question and possible

answers.
140 - Always start your function by creating a `video_segment =

VideoSegment(video)` object.
141

142 INSERT_PREVIOUS_CODE_AND_ERROR_HERE
143

144 # INSERT_QUERY_HERE

Bibliography

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning
algorithm for Boltzmann machines. Cognitive science, 9(1):147–169, 1985.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr,
Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds,
et al. Flamingo: a visual language model for few-shot learning. arXiv
preprint arXiv:2204.14198, 2022.

S-I Amari. Learning patterns and pattern sequences by self-organizing nets of
threshold elements. IEEE Transactions on computers, 100(11):1197–1206,
1972.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural
module networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 39–48, 2016.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

Fred Attneave. Multistability in perception. Scientific American, 225(6):62–71,
1971.

James Atwood and Don Towsley. Diffusion-convolutional neural networks.
Advances in neural information processing systems, 29, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell,
and Sergey Levine. Stochastic Variational Video Prediction. In International
Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=rk49Mg-CW.

205

https://openreview.net/forum?id=rk49Mg-CW

206 Bibliography

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen,
Harm de Vries, and Aaron Courville. Systematic generalization: what is
required and can it be learned? arXiv preprint arXiv:1811.12889, 2018.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson
Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv
preprint arXiv:2212.08073, 2022.

Renee Baillargeon, Elizabeth S Spelke, and Stanley Wasserman. Object
permanence in five-month-old infants. Cognition, 20(3):191–208, 1985.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien
Ecoffet, Brandon Houghton, Raul Sampedro, and Jeff Clune. Video
Pretraining (vpt): Learning to Act by Watching Unlabeled Online Videos,
2022. URL https://arxiv.org/abs/2206.11795.

Federico Baldassarre and Hossein Azizpour. Towards self-supervised learning
of global and object-centric representations. arXiv preprint
arXiv:2203.05997, 2022.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al.
Interaction networks for learning about objects, relations and physics. In
Advances in neural information processing systems, pages 4502–4510,
2016.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus
Wainwright, Heinrich Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés,
Amir Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of
Artificial Intelligence Research, 47:253–279, jun 2013.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:
A review and new perspectives. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1798–1828, 2013.

https://arxiv.org/abs/2206.11795

207 Bibliography

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Michal Podstawski, Hubert
Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving elaborate
problems with large language models. arXiv preprint arXiv:2308.09687,
2023.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long
Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, Wesam Manassra, Prafulla
Dhariwal, Casey Chu, Yunxin Jiao, and Aditya Ramesh. Improving Image
Generation with Better Captions. 2023. URL
https://cdn.openai.com/papers/dall-e-3.pdf.

Irving Biederman. Recognition-by-components: a theory of human image
understanding. Psychological review, 94(2):115, 1987.

Ondrej Biza, Robert Platt, Jan-Willem van de Meent, Lawson LS Wong, and
Thomas Kipf. Binding actions to objects in world models. arXiv preprint
arXiv:2204.13022, 2022.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. Geometric deep learning: going beyond euclidean data.
IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot learners. Advances in
neural information processing systems, 33:1877–1901, 2020.

Shyamal Buch, Cristóbal Eyzaguirre, Adrien Gaidon, Jiajun Wu, Li Fei Fei, and
Juan Carlos Niebles. Revisiting the” video” in video-language understanding.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2917–2927, 2022.

Emanuele Bugliarello, Laurent Sartran, Aishwarya Agrawal, Lisa Anne
Hendricks, and Aida Nematzadeh. Measuring Progress in Fine-grained
Vision-and-language Understanding. arXiv preprint arXiv:2305.07558, 2023.

https://cdn.openai.com/papers/dall-e-3.pdf

208 Bibliography

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted
autoencoders. arXiv preprint arXiv:1509.00519, 2015.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina
Higgins, Matt Botvinick, and Alexander Lerchner. Monet: Unsupervised
scene decomposition and representation. arXiv preprint arXiv:1901.11390,
2019.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with
transformers. In European conference on computer vision, pages 213–229.
Springer, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. Emerging properties in self-supervised
vision transformers. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 9650–9660, 2021.

Wilka Carvalho, Andrew Lampinen, Kyriacos Nikiforou, Felix Hill, and Murray
Shanahan. Feature-attending Recurrent Modules for Generalization in
Reinforcement Learning. arXiv preprint arXiv:2112.08369, 2021.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and
Marc G Bellemare. Dopamine: A research framework for deep
reinforcement learning. arXiv preprint arXiv:1812.06110, 2018.

Stephanie CY Chan, Andrew K Lampinen, Pierre H Richemond, and Felix Hill.
Zipfian environments for Reinforcement Learning. arXiv preprint
arXiv:2203.08222, 2022.

Michael Chang, Tomer Ullman, Antonio Torralba, and Joshua Tenenbaum. A
Compositional Object-based Approach to Learning Physical Dynamics. In
International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=Bkab5dqxe.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos,
Jun Shern Chan, Samuel R Bowman, Kyunghyun Cho, and Ethan Perez.
Improving code generation by training with natural language feedback. arXiv
preprint arXiv:2303.16749, 2023.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou. How Many
Demonstrations Do You Need for In-context Learning?, 2023.

https://openreview.net/forum?id=Bkab5dqxe

209 Bibliography

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of
thoughts prompting: Disentangling computation from reasoning for
numerical reasoning tasks. arXiv preprint arXiv:2211.12588, 2022a.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski,
Daniel Salz, Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer,
et al. Pali: A jointly-scaled multilingual language-image model. arXiv
preprint arXiv:2209.06794, 2022b.

Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo,
Jialin Wu, Carlos Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay,
et al. Pali-x: On Scaling up a Multilingual Vision and Language Model.
arXiv preprint arXiv:2305.18565, 2023a.

Xi Chen, Xiao Wang, Lucas Beyer, Alexander Kolesnikov, Jialin Wu, Paul
Voigtlaender, Basil Mustafa, Sebastian Goodman, Ibrahim Alabdulmohsin,
Piotr Padlewski, et al. Pali-3 Vision Language Models: Smaller, Faster,
Stronger. arXiv preprint arXiv:2310.09199, 2023b.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128,
2023c.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase
Representations using Rnn Encoder–decoder for Statistical Machine
Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–1734, 2014.

N. Chomsky. Aspects of the Theory of Syntax. The MIT Press. MIT Press, 1969.
ISBN 9780262260503. URL
https://books.google.ch/books?id=u0ksbFqagU8C.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311, 2022.

https://books.google.ch/books?id=u0ksbFqagU8C

210 Bibliography

Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural
networks for image classification. In 2012 IEEE conference on computer
vision and pattern recognition, pages 3642–3649. IEEE, 2012.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging
procedural generation to benchmark reinforcement learning. In International
conference on machine learning, pages 2048–2056. PMLR, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object
detection with convolutional neural networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3412–3420, 2019.

Antonia Creswell, Rishabh Kabra, Chris Burgess, and Murray Shanahan.
Unsupervised object-based transition models for 3d partially observable
environments. Advances in Neural Information Processing Systems, 34,
2021.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki,
Diego de Las Casas, et al. Magnetic control of tokamak plasmas through
deep reinforcement learning. Nature, 602(7897):414–419, 2022.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and
Lukasz Kaiser. Universal transformers. In International Conference on
Learning Representations, 2018.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan
Heek, Justin Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos,
Ibrahim Alabdulmohsin, et al. Scaling vision transformers to 22 billion
parameters. In International Conference on Machine Learning, pages
7480–7512. PMLR, 2023.

Fei Deng, Zhuo Zhi, and Sungjin Ahn. Generative Hierarchical Models for
Parts, Objects, and Scenes. arXiv preprint arXiv:1910.09119, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

211 Bibliography

Emily Denton and Rob Fergus. Stochastic Video Generation with a Learned
Prior. In International Conference on Machine Learning, pages 1174–1183,
2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

David Ding, Felix Hill, Adam Santoro, Malcolm Reynolds, and Matthew
Botvinick. Attention over Learned Object Embeddings Enables Complex
Visual Reasoning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery,
Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
et al. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378, 2023.

Gamaleldin F. Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus
Greff, Michael C. Mozer, and Thomas Kipf. SAVi++: Towards end-to-end
object-centric learning from real-world videos. In Advances in Neural
Information Processing Systems, 2022.

Patrick Emami, Pan He, Sanjay Ranka, and Anand Rangarajan. Efficient
iterative amortized inference for learning symmetric and disentangled
multi-object representations. In International Conference on Machine
Learning, pages 2970–2981. PMLR, 2021.

Andreas K Engel, Peter König, Andreas K Kreiter, Thomas B Schillen, and Wolf
Singer. Temporal coding in the visual cortex: new vistas on integration in
the nervous system. Trends in neurosciences, 15(6):218–226, 1992.

Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner.
Genesis: Generative Scene Inference and Sampling with Object-centric
Latent Representations. In International Conference on Learning
Representations, 2020.

212 Bibliography

SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David
Szepesvari, Geoffrey E Hinton, et al. Attend, infer, repeat: Fast scene
understanding with generative models. In Advances in Neural Information
Processing Systems, pages 3225–3233, 2016.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero,
and Tim Rocktäschel. Promptbreeder: Self-referential Self-improvement Via
Prompt Evolution. arXiv preprint arXiv:2309.16797, 2023.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for
physical interaction through video prediction. In Advances in neural
information processing systems, pages 64–72, 2016.

Gottlob Frege. über Sinn Und Bedeutung. Zeitschrift für Philosophie Und
Philosophische Kritik, 100(1):25–50, 1892a.

Gottlob Frege. Letter to Jourdain. Meaning and Reference, pages 43–45,
1892b.

Gottlob Frege. Gedankenfüge. Beiträge zur Philosophie des deutschen
Idealismus III, pages 36–51, 1923.

Pascal Fries, Danko Nikolić, and Wolf Singer. The gamma cycle. Trends in
neurosciences, 30(7):309–316, 2007.

Zhe Gan, Linjie Li, Chunyuan Li, Lijuan Wang, Zicheng Liu, Jianfeng Gao, et al.
Vision-language pre-training: Basics, recent advances, and future trends.
Foundations and Trends® in Computer Graphics and Vision, 14(3–4):
163–352, 2022.

Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas Liao, Kamilė
Lukošiūtė, Anna Chen, Anna Goldie, Azalia Mirhoseini, Catherine Olsson,
Danny Hernandez, et al. The capacity for moral self-correction in large
language models. arXiv preprint arXiv:2302.07459, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang,
Jamie Callan, and Graham Neubig. Pal: Program-aided language models. In
International Conference on Machine Learning, pages 10764–10799. PMLR,
2023.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language
models better few-shot learners. arXiv preprint arXiv:2012.15723, 2020.

213 Bibliography

Marta Garnelo and Murray Shanahan. Reconciling deep learning with
symbolic artificial intelligence: representing objects and relations. Current
Opinion in Behavioral Sciences, 29:17 – 23, 2019. ISSN 2352-1546. doi:
https://doi.org/10.1016/j.cobeha.2018.12.010. URL http:
//www.sciencedirect.com/science/article/pii/S2352154618301943.
SI: 29: Artificial Intelligence (2019).

G. M. Ghose and J. H. R. Maunsell. Spatial Summation Can Explain the
Attentional Modulation of Neuronal Responses to Multiple Stimuli in Area
V4. Journal of Neuroscience, 28(19):5115–5126, May 2008. ISSN
0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.0138-08.2008.

Geoffrey M. Ghose and John H. R. Maunsell. Attentional modulation in visual
cortex depends on task timing. Nature, 419(6907):616–620, Oct 2002.
ISSN 0028-0836, 1476-4687. doi: 10.1038/nature01057.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. In
Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

Christoph Goller and Andreas Kuchler. Learning task-dependent distributed
representations by backpropagation through structure. In Proceedings of
International Conference on Neural Networks (ICNN’96), volume 1, pages
347–352. IEEE, 1996.

Google. Google Cloud Vertex Ai Api [code-bison], Available at:
https://cloud.google.com/vertex-ai/docs/generative-ai/
model-reference/code-generation. 2023.

Anand Gopalakrishnan, Sjoerd van Steenkiste, and Jürgen Schmidhuber.
Unsupervised Object Keypoint Learning using Local Spatial Predictability.
In International Conference on Learning Representations, 2021.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for
learning in graph domains. In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., volume 2, pages 729–734. IEEE,
2005.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine,
Yoshua Bengio, and Bernhard Schölkopf. Recurrent independent
mechanisms. arXiv preprint arXiv:1909.10893, 2019.

http://www.sciencedirect.com/science/article/pii/S2352154618301943
http://www.sciencedirect.com/science/article/pii/S2352154618301943
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/code-generation
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/code-generation

214 Bibliography

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka,
Agnieszka Grabska Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al. Hybrid computing using a
neural network with dynamic external memory. Nature, 538(7626):471,
2016.

Klaus Greff, Rupesh Kumar Srivastava, and Jürgen Schmidhuber. Binding via
reconstruction clustering. arXiv preprint arXiv:1511.06418, 2015.

Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and
Jürgen Schmidhuber. Tagger: Deep unsupervised perceptual grouping. In
Advances in Neural Information Processing Systems, pages 4484–4492,
2016.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural
expectation maximization. In Advances in Neural Information Processing
Systems, pages 6691–6701, 2017.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters,
Christopher Burgess, Daniel Zoran, Loic Matthey, Matthew Botvinick, and
Alexander Lerchner. Multi-object Representation Learning with Iterative
Variational Inference. In International Conference on Machine Learning,
pages 2424–2433, 2019.

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the Binding
Problem in Artificial Neural Networks. arXiv preprint arXiv:2012.05208,
2020.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel
Duckworth, David J Fleet, Dan Gnanapragasam, Florian Golemo, Charles
Herrmann, Thomas Kipf, Abhijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh
Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek Nowrouzezahrai, Cengiz
Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi S.
M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani
Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and
Andrea Tagliasacchi. Kubric: a scalable dataset generator. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2022.

215 Bibliography

Jake Grigsby and Yanjun Qi. Measuring visual generalization in continuous
control from pixels. arXiv preprint arXiv:2010.06740, 2020.

Stephen Grossberg. Some networks that can learn, remember, and reproduce
any number of complicated space-time patterns. Indiana University Journal
of Mathematics and Mechanics, 19:53-91(1), 1969.

Stephen Grossberg. Adaptive Resonance Theory: How a brain learns to
consciously attend, learn, and recognize a changing world. Neural networks,
37:1–47, 2013.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional
visual reasoning without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
14953–14962, 2023.

William H Guss, Cayden Codel, Katja Hofmann, Brandon Houghton, Noboru
Kuno, Stephanie Milani, Sharada Mohanty, Diego Perez Liebana, Ruslan
Salakhutdinov, Nicholay Topin, et al. Neurips 2019 competition: the Minerl
competition on sample efficient reinforcement learning using human priors.
arXiv preprint arXiv:1904.10079, 2019.

William H Guss, Mario Ynocente Castro, Sam Devlin, Brandon Houghton,
Noboru Sean Kuno, Crissman Loomis, Stephanie Milani, Sharada Mohanty,
Keisuke Nakata, Ruslan Salakhutdinov, et al. The minerl 2020 competition
on sample efficient reinforcement learning using human priors. arXiv
preprint arXiv:2101.11071, 2021.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Proceedings of
the thirteenth international conference on artificial intelligence and statistics,
pages 297–304, 2010.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy
evolution. In Advances in Neural Information Processing Systems, pages
2450–2462, 2018.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv
preprint arXiv:2109.06780, 2021.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba.
Mastering atari with discrete world models. arXiv preprint
arXiv:2010.02193, 2020.

216 Bibliography

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. Advances in neural information processing
systems, 30, 2017.

Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee,
Joshua B Tenenbaum, and Peter W Battaglia. Relational inductive bias for
physical construction in humans and machines. arXiv preprint
arXiv:1806.01203, 2018.

Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning
by soft data augmentation. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 13611–13617. IEEE, 2021.

Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear
Phenomena, 42(1-3):335–346, 1990.

Olivier J Hénaff, Skanda Koppula, Evan Shelhamer, Daniel Zoran, Andrew
Jaegle, Andrew Zisserman, João Carreira, and Relja Arandjelović. Object
discovery and representation networks. In European Conference on
Computer Vision, pages 123–143, 2022.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. Deep reinforcement learning that matters. In Proceedings
of the AAAI conference on artificial intelligence, volume 32, 2018.

Lisa Anne Hendricks and Aida Nematzadeh. Probing image-language
transformers for verb understanding. arXiv preprint arXiv:2106.09141, 2021.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver. Rainbow: Combining improvements in deep reinforcement
learning. In Thirty-second AAAI conference on artificial intelligence, 2018.

Geoffrey Hinton. How to represent part-whole hierarchies in a neural network.
Neural Computation, 35(3):413–452, 2023.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with EM
routing. In International Conference on Learning Representations, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

217 Bibliography

John J Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy of
sciences, 79(8):2554–2558, 1982.

Yedid Hoshen. Vain: Attentional multi-agent predictive modeling. In Advances
in Neural Information Processing Systems, pages 2701–2711, 2017.

Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay
Krishna. Sugarcrepe: Fixing Hackable Benchmarks for Vision-language
Compositionality. arXiv preprint arXiv:2306.14610, 2023.

Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li F Fei Fei, and Juan Carlos
Niebles. Learning to decompose and disentangle representations for video
prediction. In Advances in Neural Information Processing Systems, pages
517–526, 2018.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate
Saenko. Learning to reason: End-to-end module networks for visual question
answering. In Proceedings of the IEEE international conference on computer
vision, pages 804–813, 2017.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei
Yu, Xinying Song, and Denny Zhou. Large language models cannot
self-correct reasoning yet. arXiv preprint arXiv:2310.01798, 2023.

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of
physiology, 160(1):106–154, 1962.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of
classification, 2:193–218, 1985.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for
real-world visual reasoning and compositional question answering. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 6700–6709, 2019.

John E Hummel and Keith J Holyoak. Distributing structure over time.
Behavioral and Brain Sciences, 16(3):464–464, 1993.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Francis R. Bach

218 Bibliography

and David M. Blei, editors, ICML, volume 37 of JMLR Workshop and
Conference Proceedings, pages 448–456. JMLR.org, 2015. URL
http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15.

Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu.
Human3. 6m: Large scale datasets and predictive methods for 3d human
sensing in natural environments. IEEE transactions on pattern analysis and
machine intelligence, 36(7):1325–1339, 2013.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. Going
beyond linear transformers with recurrent fast weight programmers.
Advances in Neural Information Processing Systems, 34, 2021.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. A
Modern Self-referential Weight Matrix That Learns to Modify Itself. arXiv
preprint arXiv:2202.05780, 2022.

Michael Iuzzolino, Yoram Singer, and Michael C Mozer. Convolutional
bipartite attractor networks. arXiv preprint arXiv:1906.03504, 2019.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and koray kavukcuoglu.
Spatial Transformer Networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M.
Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 2017–2025. Curran Associates, Inc., 2015.
URL http:
//papers.nips.cc/paper/5854-spatial-transformer-networks.pdf.

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch,
Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock,
Evan Shelhamer, et al. Perceiver io: A general architecture for structured
inputs & outputs. arXiv preprint arXiv:2107.14795, 2021a.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman,
and Joao Carreira. Perceiver: General perception with iterative attention. In
International Conference on Machine Learning, pages 4651–4664. PMLR,
2021b.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=rkE3y85ee.

http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15
http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
https://openreview.net/forum?id=rkE3y85ee

219 Bibliography

John G.R Jefferys, Roger D Traub, and Miles A Whittington. Neuronal
networks for induced ‘40 Hz’ rhythms. Trends in Neurosciences, 19(5):
202–208, 1996.

Jindong Jiang*, Sepehr Janghorbani*, Gerard De Melo, and Sungjin Ahn.
Scalor: Generative World Models with Scalable Object Representations. In
International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SJxrKgStDH.

Woojeong Jin, Yu Cheng, Yelong Shen, Weizhu Chen, and Xiang Ren. A good
prompt is worth millions of parameters: Low-resource prompt-based
learning for vision-language models. arXiv preprint arXiv:2110.08484, 2021.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li
Fei Fei, C Lawrence Zitnick, and Ross Girshick. Inferring and executing
programs for visual reasoning. In Proceedings of the IEEE international
conference on computer vision, pages 2989–2998, 2017.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The Malmo
Platform for Artificial Intelligence Experimentation. In IJCAI, pages
4246–4247. Citeseer, 2016.

Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan
Harper, Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar,
et al. Unity: A general platform for intelligent agents. arXiv preprint
arXiv:1809.02627, 2018.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,
Anna Potapenko, et al. Highly accurate protein structure prediction with
Alphafold. Nature, 596(7873):583–589, 2021.

Niels Justesen and Sebastian Risi. Automated curriculum learning by rewarding
temporally rare events. In 2018 IEEE Conference on Computational
Intelligence and Games (CIG), pages 1–8. IEEE, 2018.

Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. Deep
learning for video game playing. IEEE Transactions on Games, 12(1):1–20,
2019.

Rishabh Kabra, Chris Burgess, Loic Matthey, Raphael Lopez Kaufman, Klaus
Greff, Malcolm Reynolds, and Alexander Lerchner. Multi-object Datasets.
https://github.com/deepmind/multi-object-datasets/, 2019.

https://openreview.net/forum?id=SJxrKgStDH

220 Bibliography

Rishabh Kabra, Daniel Zoran, Goker Erdogan, Loic Matthey, Antonia Creswell,
Matt Botvinick, Alexander Lerchner, and Chris Burgess. Simone:
View-invariant, temporally-abstracted object representations via
unsupervised video decomposition. Advances in Neural Information
Processing Systems, 34:20146–20159, 2021.

Daniel Kahneman. Thinking, fast and slow. 2017.

Daniel Kahneman, Anne Treisman, and Brian J Gibbs. The reviewing of object
files: Object-specific integration of information. Cognitive psychology, 24
(2):175–219, 1992.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Franccois Fleuret.
Transformers are Rnns: Fast Autoregressive Transformers with Linear
Attention. In Proc. Int. Conf. on Machine Learning (ICML), 2020.

Jerrold J Katz and Jerry A Fodor. The structure of a semantic theory. language,
39(2):170–210, 1963.

Philip J Kellman and Elizabeth S Spelke. Perception of partly occluded objects
in infancy. Cognitive psychology, 15(4):483–524, 1983.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and
Wojciech Jaśkowski. Vizdoom: A doom-based ai research platform for visual
reinforcement learning. In 2016 IEEE conference on computational
intelligence and games (CIG), pages 1–8. IEEE, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. In International Conference for Learning Representations,
2015.

Diederik P Kingma and Max Welling. Auto-encoding Variational Bayes. In
International Conference on Learning Representations, 2013.

Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive Learning of
Structured World Models. In International Conference on Learning
Representations, 2020. URL
https://openreview.net/forum?id=H1gax6VtDB.

Thomas Kipf, Gamaleldin F Elsayed, Aravindh Mahendran, Austin Stone, Sara
Sabour, Georg Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus
Greff. Conditional Object-centric Learning from Video. arXiv preprint
arXiv:2111.12594, 2021.

https://openreview.net/forum?id=H1gax6VtDB

221 Bibliography

Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

Thomas N. Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard
S. Zemel. Neural Relational Inference for Interacting Systems. In
Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
pages 2693–2702, 2018. URL
http://proceedings.mlr.press/v80/kipf18a.html.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey
of generalisation in deep reinforcement learning. arXiv preprint
arXiv:2111.09794, 2021.

Kurt Koffka. Principles of Gestalt psychology. Philosophy and Scientific
Method, 32(8), 1935.

Wolfgang Köhler. Gestalt psychology. Psychologische Forschung, 31(1), 1967.

Teuvo Kohonen. Self-organization and associative memory, volume 8.
Springer Science & Business Media, 2012.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica
Yung, Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual
representation learning. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16,
pages 491–507. Springer, 2020.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. Internet-augmented
dialogue generation. arXiv preprint arXiv:2107.07566, 2021.

Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential
attend, infer, repeat: Generative modelling of moving objects. Advances in
Neural Information Processing Systems, 31, 2018.

Jan Koutník, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez.
Evolving large-scale neural networks for vision-based reinforcement learning.
In Proceedings of the 15th annual conference on Genetic and evolutionary
computation, pages 1061–1068, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

http://proceedings.mlr.press/v80/kipf18a.html

222 Bibliography

Andreas Küchler. Adaptive processing of structural data: from sequences to
trees and beyond. PhD thesis, Universität Ulm, 2000.

Andreas Küchler and Christoph Goller. Inductive learning in symbolic
domains using structure-driven recurrent neural networks. In Annual
Conference on Artificial Intelligence, pages 183–197. Springer, 1996.

Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud,
Malcolm Reynolds, Andrew Zisserman, and Volodymyr Mnih. Unsupervised
learning of object keypoints for perception and control. In Advances in
Neural Information Processing Systems, pages 10723–10733, 2019.

Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey
Levine, Laurent Dinh, and Durk Kingma. Videoflow: A flow-based
generative model for video. In International Conference on Learning
Representations, 2020.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum.
Human-level concept learning through probabilistic program induction.
Science, 350(6266):1332–1338, 2015.

Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and
Sergey Levine. Stochastic Adversarial Video Prediction. In International
Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyEl3o05Fm.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and
Yee Whye Teh. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International Conference on
Machine Learning, pages 3744–3753. PMLR, 2019.

Adam Lerer, Sam Gross, and Rob Fergus. Learning Physical Intuition of Block
Towers by Example. In International Conference on Machine Learning,
pages 430–438, 2016.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and large language
models. arXiv preprint arXiv:2301.12597, 2023.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan
Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
Grounded language-image pre-training. In Proceedings of the IEEE/CVF

https://openreview.net/forum?id=HyEl3o05Fm

223 Bibliography

Conference on Computer Vision and Pattern Recognition, pages
10965–10975, 2022.

Wenbin Li, Seyedmajid Azimi, Aleš Leonardis, and Mario Fritz. To fall or not to
fall: A visual approach to physical stability prediction. arXiv preprint
arXiv:1604.00066, 2016.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph
sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh,
Fei Deng, Jindong Jiang, and Sungjin Ahn. SPACE: Unsupervised
Object-oriented Scene Representation via Spatial Attention and
Decomposition. In International Conference on Learning Representations,
2020.

Michael John Lingelbach, Damian Mrowca, Nick Haber, Li Fei Fei, and Daniel
L K Yamins. Towards Curiosity-driven Learning of Physical Dynamics. ICLR
2020 Bridging AI and Cognitive Science Workshop, page 6, 2020.

Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex
Sergeev, and Jason Yosinski. An intriguing failing of convolutional neural
networks and the coordconv solution. In Advances in Neural Information
Processing Systems, pages 9605–9616, 2018.

Zhijian Liu, Jiajun Wu, Zhenjia Xu, Chen Sun, Kevin Murphy, William
T. Freeman, and Joshua B. Tenenbaum. Modeling Parts, Structure, and
System Dynamics via Predictive Learning. In International Conference on
Learning Representations, 2019. URL
https://openreview.net/forum?id=rJe10iC5K7.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh
Mahendran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and
Thomas Kipf. Object-centric learning with slot attention. Advances in
Neural Information Processing Systems, 33:11525–11538, 2020.

William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding
networks for video prediction and unsupervised learning. In International
Conference on Learning Representations, 2017.

Sindy Löwe, Klaus Greff, Rico Jonschkowski, Alexey Dosovitskiy, and Thomas
Kipf. Learning object-centric video models by contrasting sets. arXiv preprint
arXiv:2011.10287, 2020.

https://openreview.net/forum?id=rJe10iC5K7

224 Bibliography

Sindy Löwe, Phillip Lippe, Maja Rudolph, and Max Welling. Complex-valued
Autoencoders for Object Discovery. Transactions on Machine Learning
Research, 2022. ISSN 2835-8856.

Sindy Löwe, Phillip Lippe, Francesco Locatello, and Max Welling. Rotating
Features for Object Discovery. arXiv preprint arXiv:2306.00600, 2023.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and
Aniruddha Kembhavi. Unified-io: A unified model for vision, language, and
multi-modal tasks. arXiv preprint arXiv:2206.08916, 2022.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.
Fantastically ordered prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786, 2021.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew
Hausknecht, and Michael Bowling. Revisiting the arcade learning
environment: Evaluation protocols and open problems for general agents.
Journal of Artificial Intelligence Research, 61:523–562, 2018.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain
of thought, it takes two to tango. arXiv preprint arXiv:2209.07686, 2022.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig.
Language models of code are few-shot commonsense learners. arXiv
preprint arXiv:2210.07128, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao,
Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. Self-refine: Iterative refinement with self-feedback. arXiv preprint
arXiv:2303.17651, 2023.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution:
A continuous relaxation of discrete random variables. In International
Conference on Learning Representations, 2017.

Priyanka Mandikal and Kristen Grauman. Learning dexterous grasping with
object-centric visual affordances. In 2021 IEEE international conference on
robotics and automation (ICRA), pages 6169–6176. IEEE, 2021.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou
Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis,

225 Bibliography

Afroz Mohiuddin, Lukasz Kaiser, David Benjamin Belanger, Lucy J Colwell,
and Adrian Weller. Rethinking Attention with Performers. In Int. Conf. on
Learning Representations (ICLR), 2021.

Đorđe Miladinović, Aleksandar Stanić, Stefan Bauer, Jürgen Schmidhuber, and
Joachim M Buhmann. Spatial dependency networks: Neural layers for
improved generative image modeling. arXiv preprint arXiv:2103.08877,
2021.

Stephanie Milani, Nicholay Topin, Brandon Houghton, William H Guss,
Sharada P Mohanty, Keisuke Nakata, Oriol Vinyals, and Noboru Sean Kuno.
Retrospective analysis of the 2019 Minerl competition on sample efficient
reinforcement learning. In NeurIPS 2019 Competition and Demonstration
Track, pages 203–214. PMLR, 2020.

Peter M Milner. A model for visual shape recognition. Psychological review,
81(6):521, 1974.

Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling
Open-vocabulary Object Detection, 2023.

Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan,
Guillaume Lajoie, Michael Mozer, and Yoshua Bengio. Learning to combine
top-down and bottom-up signals in recurrent neural networks with attention
over modules. In International Conference on Machine Learning, pages
6972–6986. PMLR, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

Milad Moradi and Matthias Samwald. Evaluating the robustness of neural
language models to input perturbations. arXiv preprint arXiv:2108.12237,
2021.

Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo
Jimenez Rezende. Towards interpretable reinforcement learning using
attention augmented agents. Advances in Neural Information Processing
Systems, 32, 2019.

226 Bibliography

Michael C Mozer. A Principle for Unsupervised Hierarchical Decomposition
of Visual Scenes. In Advances in Neural Information Processing Systems,
volume 11, 1998.

Michael C Mozer, Richard Zemel, and Marlene Behrmann. Learning to
segment images using dynamic feature binding. Advances in Neural
Information Processing Systems, 4, 1991.

Michael C Mozer, Denis Kazakov, and Robert V Lindsey. State-denoised
recurrent neural networks. arXiv preprint arXiv:1805.08394, 2018.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei Fei, Josh
Tenenbaum, and Daniel L Yamins. Flexible neural representation for physics
prediction. In Advances in neural information processing systems, pages
8799–8810, 2018.

C Rodrigues Neto and José Fernando Fontanari. Multivalley structure of
attractor neural networks. Journal of Physics A: Mathematical and General,
30(22):7945, 1997.

Binh X Nguyen, Tuong Do, Huy Tran, Erman Tjiputra, Quang D Tran, and Anh
Nguyen. Coarse-to-fine reasoning for visual question answering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4558–4566, 2022.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and
Armando Solar Lezama. Demystifying Gpt Self-repair for Code Generation.
arXiv preprint arXiv:2306.09896, 2023.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

OpenAI. Introducing Chatgpt. 2022. URL
https://openai.com/blog/chatgpt.

OpenAI. Dall·e 3 is now available in Chatgpt Plus and Enterprise. 2023a. URL
https://openai.com/blog/
dall-e-3-is-now-available-in-chatgpt-plus-and-enterprise.

OpenAI. Openai Chatgpt Api [gpt-3.5-turbo], Available at:
https://platform.openai.com/docs/model-index-for-researchers.
2023b.

https://openai.com/blog/chatgpt
https://openai.com/blog/dall-e-3-is-now-available-in-chatgpt-plus-and-enterprise
https://openai.com/blog/dall-e-3-is-now-available-in-chatgpt-plus-and-enterprise
https://platform.openai.com/docs/model-index-for-researchers

227 Bibliography

OpenAI. Gpt-4 Technical Report, 2023c.

OpenAI. Gpt-4v(ision) System Card. 2023d. URL
https://cdn.openai.com/papers/GPTV_System_Card.pdf.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener,
Andre Saraiva, Katrina McKinney, Tor Lattimore, Csaba Szepesvári, Satinder
Singh, Benjamin Van Roy, Richard Sutton, David Silver, and Hado van
Hasselt. Behaviour Suite for Reinforcement Learning. In International
Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rygf-kSYwH.

Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar Mosseri, Michal Irani,
and Tali Dekel. Teaching clip to count to ten. arXiv preprint
arXiv:2302.12066, 2023.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language
models. arXiv preprint arXiv:2205.12255, 2022.

Viorica Pătrăucean, Lucas Smaira, Ankush Gupta, Adrià Recasens Continente,
Larisa Markeeva, Dylan Banarse, Skanda Koppula, Joseph Heyward, Mateusz
Malinowski, Yi Yang, et al. Perception Test: A Diagnostic Benchmark for
Multimodal Video Models. arXiv preprint arXiv:2305.13786, 2023.

Jordan B Pollack. Recursive distributed representations. Artificial Intelligence,
46(1-2):77–105, 1990.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips:
Gradient-free, edit-based instruction search for prompting large language
models. arXiv preprint arXiv:2203.07281, 2022.

Isabeau Prémont-Schwarz, Alexander Ilin, Tele Hao, Antti Rasmus, Rinu Boney,
and Harri Valpola. Recurrent ladder networks. In Advances in Neural
Information Processing Systems, pages 6009–6019, 2017.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael
Zeng. Automatic prompt optimization with” gradient descent” and beam
search. arXiv preprint arXiv:2305.03495, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin,
Xin Cong, Xiangru Tang, Bill Qian, et al. Toolllm: Facilitating large language
models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789,
2023.

https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://openreview.net/forum?id=rygf-kSYwH

228 Bibliography

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748–8763. PMLR,
2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian
Ernestus, and Noah Dormann. Stable-baselines3: Reliable Reinforcement
Learning Implementations. Journal of Machine Learning Research, 22(268):
1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation.
In International Conference on Machine Learning, pages 8821–8831. PMLR,
2021.

William M Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association, 66(336):846–850, 1971.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen
Koltun. Towards robust monocular depth estimation: Mixing datasets for
zero-shot cross-dataset transfer. IEEE transactions on pattern analysis and
machine intelligence, 44(3):1623–1637, 2020.

David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy
Lillicrap, and Peter Battaglia. Discovering objects and their relations from
entangled scene representations. arXiv preprint arXiv:1702.05068, 2017.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani
Raiko. Semi-supervised learning with ladder networks. In Advances in
neural information processing systems, pages 3546–3554, 2015.

John C Raven and JH Court. Raven’s progressive matrices. Western
Psychological Services Los Angeles, CA, 1938.

David P Reichert and Thomas Serre. Neuronal synchrony in complex-valued
deep networks. In International Conference on Learning Representations,
2014.

Laria Reynolds and Kyle McDonell. Prompt programming for large language
models: Beyond the few-shot paradigm. In Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing Systems, pages 1–7, 2021.

http://jmlr.org/papers/v22/20-1364.html

229 Bibliography

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
Backpropagation and Approximate Inference in Deep Generative Models. In
International Conference on Machine Learning, pages 1278–1286, 2014.

Maximilian Riesenhuber and Tomaso Poggio. Are Cortical Models Really
Bound by the ”binding Problem”? Neuron, 24(1):87–93, Sep 1999a. ISSN
08966273. doi: 10.1016/S0896-6273(00)80824-7.

Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object
recognition in cortex. Nature Neuroscience, 2(11):1019–1025, Nov 1999b.
ISSN 1097-6256, 1546-1726. doi: 10.1038/14819.

Adina L Roskies. The binding problem. Neuron, 24(1):7–9, 1999.

Alvaro Sanchez Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh
Merel, Martin A. Riedmiller, Raia Hadsell, and Peter Battaglia. Graph
Networks as Learnable Physics Engines for Inference and Control. In ICML,
pages 4467–4476, 2018. URL
http://proceedings.mlr.press/v80/sanchez-gonzalez18a.html.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure
Leskovec, and Peter W Battaglia. Learning to simulate complex physics with
graph networks. arXiv preprint arXiv:2002.09405, 2020.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter Battaglia, and Timothy Lillicrap. A simple neural network
module for relational reasoning. In Advances in neural information
processing systems, pages 4967–4976, 2017.

Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski,
Theophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and
Timothy Lillicrap. Relational recurrent neural networks. In Advances in
Neural Information Processing Systems, pages 7299–7310, 2018.

Rebecca Saxe and Susan Carey. The perception of causality in infancy. Acta
psychologica, 123(1-2):144–165, 2006.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The
Graph Neural Network Model. IEEE Transactions on Neural Networks, 20
(1):61–80, Jan 2009. ISSN 1045-9227. doi: 10.1109/TNN.2008.2005605.

http://proceedings.mlr.press/v80/sanchez-gonzalez18a.html

230 Bibliography

Timo Schick, Jane Dwivedi Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer:
Language models can teach themselves to use tools. arXiv preprint
arXiv:2302.04761, 2023.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are
secretly fast weight programmers. In International Conference on Machine
Learning, pages 9355–9366. PMLR, 2021.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg,
Ivan Titov, and Max Welling. Modeling relational data with graph
convolutional networks. In The Semantic Web: 15th International
Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018,
Proceedings 15, pages 593–607. Springer, 2018.

J. Schmidhuber. Towards Compositional Learning with Dynamic Neural
Networks. Technical Report FKI-129-90, Institut für Informatik, Technische
Universität München, 1990a.

J. Schmidhuber. An On-line Algorithm for Dynamic Reinforcement Learning
and Planning in Reactive Environments. In Proc. IEEE/INNS International
Joint Conference on Neural Networks, San Diego, volume 2, pages
253–258, 1990b.

J. Schmidhuber. Curious Model-building Control Systems. In Proceedings of
the International Joint Conference on Neural Networks, Singapore,
volume 2, pages 1458–1463. IEEE press, 1991a.

J. Schmidhuber. Learning Factorial Codes By Predictability Minimization.
Technical Report CU-CS-565-91, Dept. of Comp. Sci., University of
Colorado at Boulder, Dec 1991b.

J. Schmidhuber. On decreasing the ratio between learning complexity and
number of time-varying variables in fully recurrent nets. In Proceedings of
the International Conference on Artificial Neural Networks, Amsterdam,
pages 460–463. Springer, 1993a.

J. Schmidhuber and R. Huber. Learning to Generate Artificial Fovea
Trajectories for target Detection. International Journal of Neural Systems, 2(1
& 2):135–141, 1991.

231 Bibliography

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on
learning how to learn: the meta-meta-... hook. PhD thesis, Technische
Universität München, 1987.

Jürgen Schmidhuber. Making the world differentiable: On using fully recurrent
self-supervised neural networks for dynamic reinforcement learning and
planning in non-stationary environments. Institut für Informatik, Technische
Universität München. Technical Report FKI-126, 90, 1990.

Jürgen Schmidhuber. Learning to Control Fast-weight Memories: An
Alternative to recurrent Nets. Technical Report FKI-147-91, Institut für
Informatik, Technische Universität München, March 1991c.

Jürgen Schmidhuber. Steps towards “self-referential” Learning. Technical
Report CU-CS-627-92, Dept. of Comp. Sci., University of Colorado at
Boulder, November 1992.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative
to dynamic recurrent networks. Neural Computation, 4(1):131–139, 1992.

Jürgen Schmidhuber. An introspective network that can learn to run its own
weight change algorithm. In Proc. IEE Int. Conf. on Artificial Neural
Networks, pages 191–195, Brighton, UK, May 1993b.

Jürgen Schmidhuber. A self-referential weight matrix. In Proc. Int. Conf. on
Artificial Neural Networks (ICANN), pages 446–451, Amsterdam,
Netherlands, September 1993c.

Jürgen Schmidhuber. A neural network that embeds its own meta-levels. In
Proc. IEEE Int. Conf. on Neural Networks (ICNN), San Francisco, CA, USA,
March 1993d.

Jürgen Schmidhuber. Reducing the ratio between learning complexity and
number of time varying variables in fully recurrent nets. In International
Conference on Artificial Neural Networks (ICANN), pages 460–463,
Amsterdam, Netherlands, September 1993.

Jürgen Schmidhuber. Powerplay: Training an increasingly general problem
solver by continually searching for the simplest still unsolvable problem.
Frontiers in psychology, 4:313, 2013.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

232 Bibliography

Jürgen Schmidhuber, Martin Eldracher, and Bernhard Foltin. Semilinear
predictability minimization produces well-known feature detectors. Neural
Computation, 8(4):773–786, 1996.

Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human
actions: a local Svm approach. In Proceedings of the 17th International
Conference on Pattern Recognition, 2004. ICPR 2004., volume 3, pages
32–36. IEEE, 2004.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage
estimation. arXiv preprint arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun
Xiao, Carl-Johann Simon Gabriel, Tong He, Zheng Zhang, Bernhard
Schölkopf, Thomas Brox, et al. Bridging the gap to real-world object-centric
learning. arXiv preprint arXiv:2209.14860, 2022.

Mohit Sharma and Oliver Kroemer. Generalizing Object-centric Task-axes
Controllers using Keypoints. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 7548–7554, 2021.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting
Zhuang. Hugginggpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580, 2023.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer
Singh. Autoprompt: Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint arXiv:2010.15980, 2020.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous
agent with dynamic memory and self-reflection. arXiv preprint
arXiv:2303.11366, 2023.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science, 362(6419):
1140–1144, 2018.

233 Bibliography

Wolf Singer. Neuronal synchrony: a versatile code for the definition of
relations? Neuron, 24(1):49–65, 1999.

Wolf Singer. Distributed processing and temporal codes in neuronal networks.
Cognitive neurodynamics, 3:189–196, 2009.

Wolf Singer and Charles M Gray. Visual feature integration and the temporal
correlation hypothesis. Annual review of neuroscience, 18(1):555–586,
1995.

Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALLE Learns to Compose.
In Int. Conf. on Learning Representations (ICLR), Virtual only, April 2022.

Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsupervised
object-centric learning for complex and naturalistic videos. Advances in
Neural Information Processing Systems, 35:18181–18196, 2022.

Elizabeth S. Spelke. Principles of object perception. Cognitive Science, 14(1):
29–56, 1990.

Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental
science, 10(1):89–96, 2007.

Elizabeth S Spelke, Roberta Kestenbaum, Daniel J Simons, and Debra Wein.
Spatiotemporal continuity, smoothness of motion and object identity in
infancy. British Journal of Developmental Psychology, 13(2):113–142, 1995.

Alessandro Sperduti and Antonina Starita. Supervised neural networks for the
classification of structures. IEEE Transactions on Neural Networks, 8(3):
714–735, 1997.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised
learning of video representations using lstms. In International conference on
machine learning, pages 843–852, 2015.

Aleksandar Stanić and Jürgen Schmidhuber. R-sqair: Relational Sequential
Attend, Infer, Repeat. NeurIPS PGR workshop, 2019.

Aleksandar Stanić, Sjoerd van Steenkiste, and Jürgen Schmidhuber.
Hierarchical relational inference. Proceedings of the AAAI Conference on
Artificial Intelligence, 2021.

234 Bibliography

Aleksandar Stanić, Dylan Ashley, Oleg Serikov, Louis Kirsch, Francesco Faccio,
Jürgen Schmidhuber, Thomas Hofmann, and Imanol Schlag. The Languini
Kitchen: Enabling Language Modelling Research at Different Scales of
Compute. arXiv preprint arXiv:2309.11197, 2023a.

Aleksandar Stanić, Anand Gopalakrishnan, Kazuki Irie, and Jürgen
Schmidhuber. Contrastive Training of Complex-valued Autoencoders for
Object Discovery. Neural Information Processing Systems (NeurIPS), 2023b.

Aleksandar Stanić, Yujin Tang, David Ha, and Jürgen Schmidhuber. Learning to
Generalize with Object-centric Agents in the Open World Survival Game
Crafter. IEEE Transactions on Games, pages 1–20, 2023. doi:
10.1109/TG.2023.3276849.

Aleksandar Stanić, Sergi Caelles, and Michael Tschannen. Towards Truly
Zero-shot Compositional Visual Reasoning with LLMs as Programmers. arXiv
preprint arXiv:2401.01974, 2024.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. Gpt-4 Doesn’t
Know It’s Wrong: An Analysis of Iterative Prompting for Reasoning Problems,
2023.

Karl Stelzner, Robert Peharz, and Kristian Kersting. Faster Attend-infer-repeat
with Tractable Probabilistic Models. In International Conference on
Machine Learning, pages 5966–5975, 2019.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The
Distracting Control Suite–a Challenging Benchmark for Reinforcement
Learning from Pixels. arXiv preprint arXiv:2101.02722, 2021.

Sanjay Subramanian, Ben Bogin, Nitish Gupta, Tomer Wolfson, Sameer Singh,
Jonathan Berant, and Matt Gardner. Obtaining faithful interpretations from
compositional neural networks. arXiv preprint arXiv:2005.00724, 2020.

Sanjay Subramanian, Medhini Narasimhan, Kushal Khangaonkar, Kevin Yang,
Arsha Nagrani, Cordelia Schmid, Andy Zeng, Trevor Darrell, and Dan Klein.
Modular Visual Question Answering via Code Generation. arXiv preprint
arXiv:2306.05392, 2023.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory
networks. In Advances in neural information processing systems, pages
2440–2448, 2015.

235 Bibliography

Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via
python execution for reasoning. arXiv preprint arXiv:2303.08128, 2023.

Gabriel Synnaeve, Nantas Nardelli, Alex Auvolat, Soumith Chintala, Timothée
Lacroix, Zeming Lin, Florian Richoux, and Nicolas Usunier. Torchcraft: a
library for machine learning research on real-time strategy games. arXiv
preprint arXiv:1611.00625, 2016.

Yujin Tang and David Ha. The sensory neuron as a transformer:
Permutation-invariant neural networks for reinforcement learning. Advances
in Neural Information Processing Systems, 34, 2021.

Yujin Tang, Duong Nguyen, and David Ha. Neuroevolution of
self-interpretable agents. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, pages 414–424, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las
Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq,
et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja
Hauth, et al. Gemini: a family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805, 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv
Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
et al. Lamda: Language models for dialog applications. arXiv preprint
arXiv:2201.08239, 2022.

Anne Treisman. The binding problem. Current opinion in neurobiology, 6(2):
171–178, 1996.

Anne Treisman. Solutions to the binding problem: progress through
controversy and convergence. Neuron, 24(1):105–125, 1999.

Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and Jitendra
Malik. Learning shape abstractions by assembling volumetric primitives. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2635–2643, 2017.

Shimon Ullman. Visual routines. In Readings in computer vision, pages
298–328. Elsevier, 1987.

236 Bibliography

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can
Large Language Models Really Improve by Self-critiquing Their Own Plans?,
2023.

Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber.
Relational Neural Expectation Maximization: Unsupervised Discovery of
Objects and their Interactions. In International Conference on Learning
Representations, 2018. URL
https://openreview.net/forum?id=ryH20GbRW.

Sjoerd van Steenkiste, Klaus Greff, and Jürgen Schmidhuber. A Perspective on
Objects and Systematic Generalization in Model-based Rl. In ICML
workshop on Generative Modeling and Model-Based Reasoning for Robotics
and AI, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages
5998–6008, 2017.

Rishi Veerapaneni, John D Co Reyes, Michael Chang, Michael Janner, Chelsea
Finn, Jiajun Wu, Joshua Tenenbaum, and Sergey Levine. Entity abstraction in
visual model-based reinforcement learning. In Conference on Robot
Learning, pages 1439–1456. PMLR, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius
Hobbhahn, and Anson Ho. Will we run out of data? An analysis of the
limits of scaling datasets in Machine Learning. arXiv preprint
arXiv:2211.04325, 2022.

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan
Moraldo, Han Zhang, Mohammad Taghi Saffar, Santiago Castro, Julius
Kunze, and Dumitru Erhan. Phenaki: Variable length video generation from
open domain textual description. arXiv preprint arXiv:2210.02399, 2022.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John

https://openreview.net/forum?id=ryH20GbRW

237 Bibliography

Agapiou, Julian Schrittwieser, et al. Starcraft ii: A new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Christoph Von Der Malsburg. Am I thinking assemblies? In Brain Theory:
Proceedings of the First Trieste Meeting on Brain Theory, October 1–4,
1984, pages 161–176. Springer, 1986.

Christoph Von Der Malsburg. The correlation theory of brain function. In
Models of neural networks, pages 95–119. Springer, 1994.

Christoph von der Malsburg. Binding in models of perception and brain
function. Current opinion in neurobiology, 5(4):520–526, 1995.

Christoph von der Malsburg and Joachim Buhmann. Sensory segmentation
with coupled neural oscillators. Biological cybernetics, 67(3):233–242,
1992.

Christoph von der Malsburg and Werner Schneider. A neural cocktail-party
processor. Biological cybernetics, 54(1):29–40, 1986.

W. von Humboldt, W.F. von Humboldt, M. Losonsky, P. Heath, X. Yao, H.W.
von, K. Ameriks, and D.M. Clarke. Humboldt: ’On Language’: On the
Diversity of Human Language Construction and Its Influence on the Mental
Development of the Human Species. Cambridge Texts in the History of
Philosophy. Cambridge University Press, 1999. ISBN 9780521667722. URL
https://books.google.ch/books?id=_UODbGlD4WUC.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos
with scene dynamics. In Advances in neural information processing systems,
pages 613–621, 2016.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan,
Zicheng Liu, Ce Liu, and Lijuan Wang. Git: A generative image-to-text
transformer for vision and language. arXiv preprint arXiv:2205.14100,
2022a.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee,
and Ee-Peng Lim. Plan-and-solve prompting: Improving zero-shot
chain-of-thought reasoning by large language models. arXiv preprint
arXiv:2305.04091, 2023a.

https://books.google.ch/books?id=_UODbGlD4WUC

238 Bibliography

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma,
Chang Zhou, Jingren Zhou, and Hongxia Yang. Ofa: Unifying architectures,
tasks, and modalities through a simple sequence-to-sequence learning
framework. In International Conference on Machine Learning, pages
23318–23340. PMLR, 2022b.

Su Wang, Chitwan Saharia, Ceslee Montgomery, Jordi Pont Tuset, Shai Noy,
Stefano Pellegrini, Yasumasa Onoe, Sarah Laszlo, David J Fleet, Radu Soricut,
et al. Imagen editor and editbench: Advancing and evaluating text-guided
image inpainting. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18359–18369, 2023b.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local
neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7794–7803, 2018.

Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code generation for few-shot
event structure prediction. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages
3640–3663, 2023c.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain
of thought reasoning in language models. arXiv preprint arXiv:2203.11171,
2022c.

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan
Pascanu, and Andrea Tacchetti. Visual interaction networks: Learning a
physics simulator from video. In Advances in neural information processing
systems, pages 4539–4547, 2017.

Nicholas Watters, Loic Matthey, Matko Bosnjak, Christopher P Burgess, and
Alexander Lerchner. Cobra: Data-efficient Model-based Rl through
Unsupervised Object Discovery and Curiosity-driven Exploration. ICML
workshop on Generative Modeling and Model-Based Reasoning for Robotics
and AI, 2019a.

Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander
Lerchner. Spatial broadcast decoder: A simple architecture for learning
disentangled representations in vaes. arXiv preprint arXiv:1901.07017,
2019b.

239 Bibliography

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing
Systems, 35:24824–24837, 2022.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun
Chen, Hanxiao Liu, Da Huang, Denny Zhou, et al. Larger language models
do in-context learning differently. arXiv preprint arXiv:2303.03846, 2023.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping,
and Tom Goldstein. Hard prompts made easy: Gradient-based discrete
optimization for prompt tuning and discovery. arXiv preprint
arXiv:2302.03668, 2023.

Markus Werning, Edouard Machery, and Gerhard Schurz. The
Compositionality of Meaning and Content, Volume 1: Foundational issues.
2005.

Max Wertheimer. Untersuchungen zur Lehre von der Gestalt. Ii.
Psychologische Forschung, 4(1):301–350, 1923.

Daan Wierstra, Alexander Foerster, Jan Peters, and Juergen Schmidhuber.
Solving deep memory Pomdps with recurrent policy gradients. In
International conference on artificial neural networks, pages 697–706.
Springer, 2007.

Ronald J Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8:229–256, 1992.

Yizhe Wu, Oiwi Parker Jones, Martin Engelcke, and Ingmar Posner. Apex:
Unsupervised, Object-centric Scene Segmentation and Tracking for Robot
Manipulation. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3375–3382, 2021.

Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Animesh Garg.
Slotformer: Unsupervised Visual Dynamics Simulation with Object-centric
Models. In The Eleventh International Conference on Learning
Representations, 2023.

Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis,
Rémi Coulom, and Andrew Sumner. Torcs, the open racing car simulator.
Software available at http://torcs. sourceforge. net, 4(6):2, 2000.

240 Bibliography

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next
phase of question-answering to explaining temporal actions. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
pages 9777–9786, 2021.

Fei Xu and Susan Carey. Infants’ metaphysics: The case of numerical identity.
Cognitive psychology, 30(2):111–153, 1996.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Yanggang Wang, Haiyu Li, and
Zhilin Yang. Gps: Genetic Prompt Search for Efficient Few-shot Learning.
arXiv preprint arXiv:2210.17041, 2022a.

Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan
Kautz, and Xiaolong Wang. Groupvit: Semantic segmentation emerges from
text supervision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18134–18144, 2022b.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny
Zhou, and Xinyun Chen. Large language models as optimizers. arXiv
preprint arXiv:2309.03409, 2023a.

Lingfeng Yang, Yueze Wang, Xiang Li, Xinlong Wang, and Jian Yang.
Fine-grained Visual Prompting. arXiv preprint arXiv:2306.04356, 2023b.

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng
Liu, and Lijuan Wang. An empirical study of gpt-3 for few-shot
knowledge-based vqa. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 3081–3089, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan
Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving
with large language models. arXiv preprint arXiv:2305.10601, 2023.

Yuan Yao, Ao Zhang, Zhengyan Zhang, Zhiyuan Liu, Tat-Seng Chua, and
Maosong Sun. Cpt: Colorful prompt tuning for pre-trained vision-language
models. arXiv preprint arXiv:2109.11797, 2021.

Qinghao Ye, Guohai Xu, Ming Yan, Haiyang Xu, Qi Qian, Ji Zhang, and Fei
Huang. Hitea: Hierarchical temporal-aware video-language pre-training. In
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 15405–15416, 2023.

241 Bibliography

Qi Yi, Rui Zhang, Shaohui Peng, Jiaming Guo, Xing Hu, Zidong Du, Xishan
Zhang, Qi Guo, and Yunji Chen. Object-category Aware Reinforcement
Learning. arXiv preprint arXiv:2210.07802, 2022.

Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An Investigation into
Pre-training Object-centric Representations for Reinforcement Learning.
arXiv preprint arXiv:2302.04419, 2023.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini,
and Yonghui Wu. Coca: Contrastive captioners are image-text foundation
models. arXiv preprint arXiv:2205.01917, 2022.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg.
Modeling context in referring expressions. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part II 14, pages 69–85. Springer, 2016.

Jinyang Yuan, Bin Li, and Xiangyang Xue. Generative Modeling of Infinite
Occluded Objects for Compositional Scene Representation. In International
Conference on Machine Learning, pages 7222–7231, 2019.

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and
James Zou. When and Why Vision-language Models Behave like
Bags-of-words, and What to Do About It? In The Eleventh International
Conference on Learning Representations, 2022.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Self-supervised
visual reinforcement learning with object-centric representations. arXiv
preprint arXiv:2011.14381, 2020.

Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius. Object-centric
Learning for Real-World Videos by Predicting Temporal Feature Similarities.
arXiv preprint arXiv:2306.04829, 2023.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,
Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick,
Oriol Vinyals, and Peter Battaglia. Deep reinforcement learning with
relational inductive biases. In International Conference on Learning
Representations, 2019. URL
https://openreview.net/forum?id=HkxaFoC9KQ.

https://openreview.net/forum?id=HkxaFoC9KQ

242 Bibliography

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong,
Stefan Welker, Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas
Sindhwani, et al. Socratic models: Composing zero-shot multimodal
reasoning with language. arXiv preprint arXiv:2204.00598, 2022.

Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision language
pre-training: Aligning texts with visual concepts. arXiv preprint
arXiv:2111.08276, 2021.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos
Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim
Neumann, Alexey Dosovitskiy, et al. The visual task adaptation benchmark.
2019.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid
loss for language image pre-training. arXiv preprint arXiv:2303.15343, 2023.

Amy Zhang, Yuxin Wu, and Joelle Pineau. Natural environment benchmarks
for reinforcement learning. arXiv preprint arXiv:1811.06032, 2018.

Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen, Kyusong Lee,
Xiaopeng Lu, and Jianwei Yin. Vl-checklist: Evaluating pre-trained
vision-language models with objects, attributes and relations. arXiv preprint
arXiv:2207.00221, 2022.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate
before use: Improving few-shot performance of language models. In
International Conference on Machine Learning, pages 12697–12706. PMLR,
2021.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi
Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al.
Least-to-most prompting enables complex reasoning in large language
models. arXiv preprint arXiv:2205.10625, 2022a.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. Large language models are human-level prompt
engineers. arXiv preprint arXiv:2211.01910, 2022b.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert
Csordás, Anand Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader
Hammoud, Vincent Herrmann, Kazuki Irie, et al. Mindstorms in Natural
Language-based Societies of Mind. arXiv preprint arXiv:2305.17066, 2023.

243 Bibliography

Daniel Zoran, Rishabh Kabra, Alexander Lerchner, and Danilo J Rezende.
Parts: Unsupervised segmentation with slots, attention and independence
maximization. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10439–10447, 2021.

	Contents
	Introduction
	The Binding Problem
	Prior work and possible ways of going forward
	Object-centric Inductive Biases
	Scaling Parameters, Data and Compute
	Modular Networks and LLMs as controllers

	Contributions and organization

	Improving Relational Reasoning In Sequential Slots Models
	Relational Sequential Attend Infer Repeat
	Relational Module

	Experiments
	Conclusion and Discussion

	Learning Hierarchical Object Representations
	Method
	Inferring Objects, Parts, and their Relations
	Physical Reasoning
	Learning

	Related Work
	Experiments
	State Springs Dataset
	Visual Datasets

	Conclusion and Discussion

	Learning to Generalize with Object-centric Agents
	Environments
	Methods
	Linear and Recurrent PPO
	Object-centric Agents

	Experiments on the Crafter environment
	Improved baselines and hyper-parameter analysis.
	Agents use inventory display as a ``scratchpad.''
	Recurrent improve over feedforward agents
	Asymptotic Performance

	OOD Generalization Experiments
	CrafterOODapp - out-of-distribution object appearance.
	CrafterOODnum - out-of-distribution object numbers.

	Object-centric Agents Analysis
	Object-centric Agents Ablation
	OC-SA Agents Visualization and Interpretability.
	OC-CA Agents Visualization and Interpretability.

	Related Work
	Conclusion and Discussion

	Synchrony-based Object Discovery with Complex-Valued Autoencoders
	Background
	Method
	Results
	Related Work
	Conclusion and Discussion

	Compositional Visual Reasoning with LLMs as Programmers
	LLMs as programmers for visual reasoning framework
	Background
	Abstract API through visual routines
	Automatic generation of in-context examples
	Self-correction

	Experiments
	Zero-Shot through spatially and temporally Abstract API
	Few-shot boostrapping via automatically generated in-context examples (ACEs)
	Self-correction
	Error analysis

	Discussion and future work
	Conclusion

	Conclusion and Future Work
	Publications during the PhD program
	Additional Details for Learning Hierarchical Object Representations
	Datasets
	Springs
	Human3.6M
	KTH

	Training Details
	HRI Architecture Details
	Ablations
	NRI Baseline
	LSTM Baseline
	Additional Results
	State Springs
	Visual Springs - Different Number of Objects and Homogeneous Colors
	Prediction Rollouts and Latent Interaction Graph Inference
	Visual Springs - Diverse Datasets
	Visual Springs - Generalization to Different Number of Objects

	Additional Details for Learning to Generalize with Object-centric Agents
	OOD environment Objects
	Network Configurations
	Object-centric agents formal details
	Object-centric Self-Attention (OC-SA) agents
	Object-centric Cross-Attention (OC-CA) agents

	Off-policy algorithms on Crafter
	CrafterOODapp performance
	CrafterOODnum performance
	Hyper-parameter heatmaps

	Additional Details for Synchrony-based Object Discovery with Complex-Valued Autoencoders
	Experimental Details
	Additional results
	Generalization to Higher Number of Objects
	Architecture Modifications
	Contrastive Learning Ablations

	Additional Visualizations

	Additional Details for Compositional Visual Reasoning with LLMs as Programmers
	Ablations
	Pretrained models
	Self-debugging prompt
	Prompt listings
	RefCOCO and GQA - ViperGPT API
	RefCOCO and GQA - Abstract API
	NExT-QA - ViperGPT API
	NExT-QA - Abstract API

	Bibliography

